33 research outputs found
Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities
The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs) operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications
The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance
Due to the influence of liquid load, the equivalent resistance of in-liquid quartz crystal microbalance (QCM) increases sharply, and the quality factor and resonant frequency decreases. We found that the change in the resonant frequency of in-liquid QCM consisted of two parts: besides the frequency changes due to the mass and viscous load (which could be equivalent to motional inductance), the second part of frequency change was caused by the increase of motional resistance. The theoretical calculation and simulation proved that the increases of QCM motional resistance may indeed cause the decreases of resonant frequency, and revealed that the existence of static capacitance was the root cause of this frequency change. The second part of frequency change (due to the increases of motional resistance) was difficult to measure accurately, and may cause great error for in-liquid QCM applications. A technical method to reduce the interference caused by this effect is presented. The study contributes to the accurate determination of the frequency and amplitude change of in-liquid QCM caused by liquid load, which is significant for the QCM applications in the liquid phase
Analysis of the Effect of Electrode Materials on the Sensitivity of Quartz Crystal Microbalance
This paper investigated the effect of electrode materials on the performance of quartz crystal microbalance (QCM) sensors by means of theoretical calculation, experiment, and finite element analysis methods. First, we calculated the particle displacement amplitude and thus obtained the mass sensitivity function distribution of QCMs with gold, silver and aluminum electrodes, and found that the QCM with the gold electrode has the highest mass sensitivity at the center of the electrode. Then, we tested the humidity-sensing performance of QCMs with gold, silver, and aluminum electrodes using graphene oxide (GO) as the sensitive material, and found that the QCM with the gold electrode has higher humidity sensitivity. Finally, we used the finite element analysis software COMSOL Multiphysics to simulate the specific electrode material parameters that affect the sensitivity of the QCMs. The simulation results show that the density and Young’s modulus of the electrode material parameters mainly affect the sensitivity. The results of this paper are instructive for optimizing QCM sensor performance and improving the capability of QCM quantitative analysis
Numerical Simulation of a Vortex Combustor Based on Aluminum and Steam
In this paper we report a new development in the numerical model for aluminum-steam combustion. This model is based on the diffusion flame of the continuum regime and the thermal equilibrium between the particle and the flow field, which can be used to calculate the aluminum particle combustion model for two phase calculation conditions. The model prediction is in agreement with the experimental data. A new type of vortex combustor is proposed to increase the efficiency of the combustion of aluminum and steam, and the mathematical model of the two phase reacting flow in this combustor is established. The turbulence effects are modeled using the Reynolds Stress Model (RSM) with Linear Pressure-Strain approach, and the Eddy-Dissipation model is used to simulate the gas phase combustion. Aluminum particles are injected into the vortex combustor, forming a swirling flow around the chamber, whose trajectories are traced using the Discrete Phase Model (DPM). The simulation results show that the vortex combustor can achieve highly efficient combustion of aluminum and steam. The influencing factors, such as the eccentric distance of the inlet of aluminum particles, particle size and steam inlet diameter, etc., are studied