129 research outputs found

    The association between sleep duration, respiratory symptoms, asthma, and COPD in adults

    Get PDF
    IntroductionThe association between sleep duration and cough, wheezing, and dyspnea was unclear. This research aimed to test this relationship.MethodsResearch data were obtained from people who participated in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2012. We used weighted logistic regression analysis and fitted curves to explore the association between sleep and respiratory symptoms. In addition, we investigated the association between sleep duration, chronic obstructive pulmonary disease (COPD), and asthma. The stratified analysis is used to analyze inflection points and specific populations.ResultsThe 14,742 subjects are weighted to reflect the 45,678,491 population across the United States. Weighted logistic regression and fitted curves show a U-shaped relationship between sleep duration and cough and dyspnea. This U-shaped relationship remained in people without COPD and asthma. The stratified analysis confirmed that sleep duration before 7.5 h was negatively associated with cough (HR 0.80, 95% CI 0.73–0.87) and dyspnea (HR 0.82, 95% CI 0.77–0.88). In contrast, it was positively associated with cough and (HR 1.30, 95% CI 1.14–1.48) dyspnea (HR 1.12, 95% CI 1.00–1.26) when sleep duration was >7.5 h. In addition, short sleep duration is associated with wheezing, asthma, and COPD.ConclusionBoth long and short sleep duration are associated with cough and dyspnea. And short sleep duration is also an independent risk factor for wheezing, asthma, and COPD. This finding provides new insights into the management of respiratory symptoms and diseases

    The co-benefits of clean air and low-carbon policies on heavy metal emission reductions from coal-fired power plants in china

    Get PDF
    China has implemented a series of measures to address air pollutants and carbon emissions from coal-fired power plants, which can mitigate toxic heavy metal emissions simultaneously. By integrating plant-level information and energy activity data, we investigated the co-benefits of clean air and low-carbon policies by compiling a detailed inventory of historical heavy mental emissions (i.e., Hg, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, Zn, As, and Se) for China's coal-fired power plants during 2005–2020. Several scenarios were then designed to assess the evolution of heavy metal emissions for each coal-fired power plant with consideration given to the coal washing rate, air pollution control devices, operational hours and lifetime. The total emissions decreased from 12.9 thousand tons in 2005 to 8.8 thousand tons in 2020, which was mainly due to the widely installation of upgraded end-of-pipe devices and the decommissioning of small and emission-intensive plants, especially in Sichuan, Jiangsu and Zhejiang. Scenario analysis shows that reducing the operational lifetime to 20 years is the most effective measure to reduce national HM emissions, but the effects differ widely between regions. This study provides insights for the precise co-control of both heavy metals and carbon emissions, which is highly important for meeting the requirements of the Minamata Convention and carbon neutrality

    Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts

    Get PDF
    Abstract(#br)Biomass-derived ethyl levulinate (EL) is currently deemed as a promising fuel bioadditive to improve (bio)diesel combustion performance without the sacrifice of its octane number. In this contribution, a range of Zr–Al bimetallic catalysts were prepared for the cascade conversion of furfural to EL by the integration of transfer hydrogenation and ethanolysis in ethanol. The ratio of Lewis to Brønsted acid sites (L/B) could be tuned by the ratio of Al 2 O 3 to ZrO 2 over SBA-15 support. Among these catalysts, Zr–Al/SBA-15(30:10) with appropriate L/B ratio of 2.25 exhibited an outstanding catalytic performance to give a furfural (FF) conversion up to 92.8% with a EL selectivity as high as 71.4% at 453 K in 3 h

    Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum.

    Get PDF
    Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference value to the large-scale production of PE

    miR-155-5p is Negatively Associated with Acute Pancreatitis and Inversely Regulates Pancreatic Acinar Cell Progression by Targeting Rela and Traf3

    Get PDF
    Background/Aims: Acute pancreatitis contributes to high mortality in pancreatitis patients, and miRNAs play a vital role in the development of acute pancreatitis (AP), however, its precise biological role remains largely elusive. Methods: To clarify the potential mechanisms of miRNAs in AP, we built mouse models of mild acute pancreatitis (MAP) and moderate/ severe acute pancreatitis (SAP). MiRNA microarray analysis and Real-time quantitative PCR (qRT-PCR) were used to analyze the expression of miRNA in MAP/SAP. TargetScan software, dual-luciferase gene reporter assays and Western blotting were used to assess the target genes of miR-155-5p in AP. Results: miR-155-5p was significantly decreased in MAP/SAP mice compared to controls. In pancreatic acinar AR42J cells transfected with miR-155-5p mimic, the expression of Rela and Traf3 notably decreased in both the caerulein- and TLC-S-induced groups compared with the negative control (NC); however, the expression of Rela and Traf3 notably increased after transfection with miR-155-5p inhibitor. Combined analysis using the TargetScan software and dual-luciferase gene reporter assays indicated that Rela and Traf3 were both targeted by miR-155-5p. Meanwhile, the expression of Ptgs2 also decreased after transfection of the AR42J cells with miR-155-5p mimic. The opposite results were found when miR-155-5p inhibitor was transfected into the AR42J cells. In addition, we treated caerulein- and TLC-S-induced AR42J cells with the Rela inhibitor helenalin and found that the expression of Rela, Traf3 and Ptgs2 decreased compared with the NC, while the expression of miR-155-5p did not show any significant difference. Furthermore, we found that miR-155-5p was significantly down-regulated in pancreatitis patients. Conclusion: miR-155-5p inversely regulated AP development through the Rela/Traf3/Ptgs2 signaling pathway
    • …
    corecore