2,566 research outputs found

    Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection

    Full text link
    The classical dynamic programming-based optimal stochastic control methods fail to cope with nonseparable dynamic optimization problems as the principle of optimality no longer applies in such situations. Among these notorious nonseparable problems, the dynamic mean-variance portfolio selection formulation had posted a great challenge to our research community until recently. A few solution methods, including the embedding scheme, have been developed in the last decade to solve the dynamic mean-variance portfolio selection formulation successfully. We propose in this paper a novel mean-field framework that offers a more efficient modeling tool and a more accurate solution scheme in tackling directly the issue of nonseparability and deriving the optimal policies analytically for the multi-period mean-variance-type portfolio selection problems

    Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure

    Full text link
    The discrete-time mean-variance portfolio selection formulation, a representative of general dynamic mean-risk portfolio selection problems, does not satisfy time consistency in efficiency (TCIE) in general, i.e., a truncated pre-committed efficient policy may become inefficient when considering the corresponding truncated problem, thus stimulating investors' irrational investment behavior. We investigate analytically effects of portfolio constraints on time consistency of efficiency for convex cone constrained markets. More specifically, we derive the semi-analytical expressions for the pre-committed efficient mean-variance policy and the minimum-variance signed supermartingale measure (VSSM) and reveal their close relationship. Our analysis shows that the pre-committed discrete-time efficient mean-variance policy satisfies TCIE if and only if the conditional expectation of VSSM's density (with respect to the original probability measure) is nonnegative, or once the conditional expectation becomes negative, it remains at the same negative value until the terminal time. Our findings indicate that the property of time consistency in efficiency only depends on the basic market setting, including portfolio constraints, and this fact motivates us to establish a general solution framework in constructing TCIE dynamic portfolio selection problem formulations by introducing suitable portfolio constraints
    corecore