35 research outputs found

    Evaluating cardiac function with chest computed tomography in acute ischemic stroke: feasibility and correlation with short-term outcome

    Get PDF
    BackgroundThe outcomes of patients with acute ischemic stroke (AIS) are related to cardiac function. Cardiac insufficiency can manifest as hydrostatic changes in the lungs. Computed tomography (CT) of the chest is commonly used for screening pulmonary abnormalities and provides an opportunity to assess cardiac function.PurposeTo evaluate the correlation between hydrostatic lung manifestations on chest CT and cardiac function with its potential to predict the short-term outcome of AIS patients.MethodsWe retrospectively analyzed AIS patients who had undergone chest CT at admission and echocardiogram within 48 h. Morphological and quantitative hydrostatic changes and left ventricular dimensions were assessed using chest CT. Improvement in the National Institutes of Health Stroke Scale (NIHSS) score on the seventh day determined short-term outcomes. Multivariate analysis examined the correspondence between hydrostatic lung manifestations, left ventricular dimension, and left ventricle ejection fraction (LVEF) on echocardiography, and the correlation between hydrostatic changes and short-term outcomes.ResultsWe included 204 patients from January to December 2021. With the progression of hydrostatic changes on chest CT, the LVEF on echocardiography gradually decreased (p < 0.05). Of the 204, 53 patients (26%) with varying degrees of hypostatic lung manifestations had less improvement in the NIHSS score (p < 0.05). The density ratio of the anterior/posterior lung on CT showed a significant negative correlation with improvement in the NIHSS score (r = −5.518, p < 0.05). Additionally, patients with a baseline NIHSS ≥4 with left ventricular enlargement had significantly lower LVEF than that of patients with normal NIHSS scores.ConclusionHydrostatic lung changes on chest CT can be used as an indicator of cardiac function and as a preliminary reference for short-term outcome in AIS patients

    Contrast-enhanced whole-heart coronary MRA at 3.0T for the evaluation of cardiac venous anatomy

    Get PDF
    This study was designed to evaluate the value of contrast-enhanced whole-heart coronary MRA (CMRA) at 3.0T in depicting the cardiac venous anatomy. In cardiac resynchronization therapy (CRT), left ventricular (LV) pacing is achieved by positioning the LV lead in one of the tributaries of the coronary sinus (CS). Pre-implantation knowledge of the venous anatomy may help determine whether transvenous LV lead placement for CRT is feasible. Images of 51 subjects undergoing contrast-enhanced whole-heart CMRA at 3.0T were retrospectively analyzed. Data acquisition was performed using electrocardiography-triggered, navigator-gated, inversion-recovery prepared, segmented gradient-echo sequence. A 32-element cardiac coil was used for data acquisition. The visibility of the cardiac veins was graded visually using a 4-point scale (1: poor–4: excellent). The paired Student t test was used to evaluate differences in diameters of the ostium of the CS in anteroposterior and superoinferior direction. The cardiac veins were finally evaluated in 48 subjects with three anatomic variations. The diameter of the CS ostium in the superoinferior direction (1.13 ± 0.26 cm) was larger than in the anteroposterior direction (0.82 ± 0.19 cm) (P < 0.05). The mean visibility score of CS, posterior interventricular vein, posterior vein of the left ventricle, left marginal vein, and anterior interventricular vein was 4.0 ± 0.0, 3.4 ± 0.5, 3.4 ± 0.5, 3.0 ± 0.8, and 3.3 ± 0.5, respectively. In conclusion, contrast-enhanced whole-heart CMRA at 3.0T can depict the normal and variant cardiac venous anatomy

    Atherosclerosis Burden of Brain‐ and Heart‐Supplying Arteries and the Relationship With Vascular Risk in Patients With Ischemic Stroke

    No full text
    Background Atherosclerosis of brain‐ and heart‐supplying arteries (BHAs) are risk indicators for patients with ischemic stroke, but the atherosclerosis burden (AB) of intracranial, cervical, aortic, and coronary arteries in each and in total have not been simultaneously evaluated, and the associations with vascular risk remain unknown. Methods and Results With computed tomography angiography, single‐territory AB was triple ranked on the basis of the number of arterial segments with a significant atherosclerotic lesion. The total AB (TAB) of BHAs was triple ranked on the basis of the number of arterial territories with a significant atherosclerotic lesion, or according to the sum of 4 single‐territory AB rank‐scores. After a 12‐month follow‐up of 395 patients with ischemic stroke, a composite outcome of ischemic stroke, myocardial infarction, and vascular death occurred in 10.9%. The single‐territory AB of intracranial, cervical, aortic, and coronary arteries showed distinct strata patterns and different associations with vascular risk. The score‐based TAB of BHAs predicted vascular risk (crude hazard ratios [95% CIs]: per level increase, 2.35 [1.54–3.58]; median versus low, 3.37 [1.45–7.82]; high versus low, 6.00 [2.36–15.24]) independently of vascular risk factors and single‐territory AB, providing more prognostic information than the TAB of BHAs measured by the number of significantly atherosclerotic territories. Vascular events occurred in 3.0%, 13.6%, and 22.6% of patients in the low (41.8%), median (44.8%), and high (13.4%) strata of the score‐based TAB of BHAs, respectively. Conclusions The single‐territory AB of intracranial, cervical, aortic, or coronary arteries might be not reliable for vascular risk stratification in patients with ischemic stroke, and evaluating the TAB of BHAs by quantitatively integrating the single‐territory AB is advisable

    Topical Treatment with Xiaozheng Zhitong Paste (XZP) Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    No full text
    To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05). Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all). Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats

    Prospective ECG-triggered coronary CT angiography: clinical value of noise-based tube current reduction method with iterative reconstruction.

    Get PDF
    OBJECTIVES: To evaluate the clinical value of noise-based tube current reduction method with iterative reconstruction for obtaining consistent image quality with dose optimization in prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). MATERIALS AND METHODS: We performed a prospective randomized study evaluating 338 patients undergoing CCTA with prospective ECG-triggering. Patients were randomly assigned to fixed tube current with filtered back projection (Group 1, n = 113), noise-based tube current with filtered back projection (Group 2, n = 109) or with iterative reconstruction (Group 3, n = 116). Tube voltage was fixed at 120 kV. Qualitative image quality was rated on a 5-point scale (1 = impaired, to 5 = excellent, with 3-5 defined as diagnostic). Image noise and signal intensity were measured; signal-to-noise ratio was calculated; radiation dose parameters were recorded. Statistical analyses included one-way analysis of variance, chi-square test, Kruskal-Wallis test and multivariable linear regression. RESULTS: Image noise was maintained at the target value of 35HU with small interquartile range for Group 2 (35.00-35.03HU) and Group 3 (34.99-35.02HU), while from 28.73 to 37.87HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 20% and 51% reduction in effective dose for Group 2 (2.9 mSv) and Group 3 (1.8 mSv) were achieved compared with Group 1 (3.7 mSv). After adjustment for scan characteristics, iterative reconstruction was associated with 26% reduction in effective dose. CONCLUSION: Noise-based tube current reduction method with iterative reconstruction maintains image noise precisely at the desired level and achieves consistent image quality. Meanwhile, effective dose can be reduced by more than 50%

    Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice

    Get PDF
    Background: Endometrial regenerative cells (ERCs) is an attractive novel type of adult mesenchymal stem cells that can be non-invasively obtained from menstrual blood and are easily replicated at a large scale without tumorigenesis. We have previously reported that ERCs exhibit unique immunoregulatory properties in experimental studies in vitro and in vivo. In this study, the protective effects of ERCs on renal ischemia–reperfusion injury (IRI) were examined. Methods Renal IRI in C57BL/6 mice was induced by clipping bilateral renal pedicles for 30 min, followed by reperfusion for 48 h. ERCs were isolated from healthy female menstrual blood, and were injected (1 million/mouse, i.v.) into mice 2 h prior to IRI induction. Renal function, pathological and immunohistological changes, cell populations and cytokine profiles were evaluated after 48 h of renal reperfusion. Results Here, we showed that as compared to untreated controls, administration of ERCs effectively prevented renal damage after IRI, indicated by better renal function and less pathological changes, which were associated with increased serum levels of IL-4, but decreased levels of TNF-α, IFN-γ and IL-6. Also, ERC-treated mice displayed significantly less splenic and renal CD4+ and CD8+ T cell populations, while the percentage of splenic CD4+CD25+ regulatory T cells and infiltrating M2 macrophages in the kidneys were significantly increased in ERC-treated mice. Conclusions This study demonstrates that the novel anti-inflammatory and immunoregulatory effects of ERCs are associated with attenuation of renal IRI, suggesting that the unique features of ERCs may make them a promising candidate for cell therapies in the treatment of ischemic acute kidney injury in patients.Medicine, Faculty ofOther UBCNon UBCUrologic Sciences, Department ofReviewedFacult
    corecore