7 research outputs found
Recommended from our members
Multilayered regulation of TORC1-body formation in budding yeast
The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.National Institutes of Health [R01GM097329, T32GM008659]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Inositol Pyrophosphates Regulate Cell Growth and the Environmental Stress Response by Activating the HDAC Rpd3L
Cells respond to stress and starvation by adjusting their growth rate and enacting stress defense programs. In eukaryotes this involves inactivation of TORC1, which in turn triggers downregulation of ribosome and protein synthesis genes and upregulation of stress response genes. Here we report that the highly conserved inositol pyrophosphate (PP-IP) second messengers (including 1-PP-IP5, 5-PP-IP4, and 5-PP-IP5) are also critical regulators of cell growth and the general stress response, acting in parallel with the TORC1 pathway to control the activity of the class I histone deacetylase Rpd3L. In fact, yeast cells that cannot synthesize any of the PP-IPs mount little to no transcriptional response to osmotic, heat, or oxidative stress. Furthermore, PP-IP-dependent regulation of Rpd3L occurs independently of the role individual PP-IPs (such as 5-PP-IP5) play in activating specialized stress/starvation response pathways. Thus, the PP-IP second messengers simultaneously activate and tune the global response to stress and starvation signals
Recommended from our members
Integrated TORC1 and PKA signaling control the temporal activation of glucose-induced gene expression in yeast
The growth rate of a yeast cell is controlled by the target of rapamycin kinase complex I (TORC1) and cAMP-dependent protein kinase (PKA) pathways. To determine how TORC1 and PKA cooperate to regulate cell growth, we performed temporal analysis of gene expression in yeast switched from a non-fermentable substrate, to glucose, in the presence and absence of TORC1 and PKA inhibitors. Quantitative analysis of these data reveals that PKA drives the expression of key cell growth genes during transitions into, and out of, the rapid growth state in glucose, while TORC1 is important for the steady-state expression of the same genes. This circuit design may enable yeast to set an exact growth rate based on the abundance of internal metabolites such as amino acids, via TORC1, but also adapt rapidly to changes in external nutrients, such as glucose, via PKA.U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) [1R01GM097329, T32GM084905]; NIGMS NIH HHS [T32 GM084905, R01 GM097329]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Atomic Simulation of Fatigue Crack Growth Mechanism of Single Crystal γ-TiAl Alloy
In order to study the relationship of fatigue property、crack growth and organization form of TiAl alloy, the micro crack growth and micro deformation mechanism of single crystal γ-TiAl alloy with an embedded boundary crack under cyclic loading were studied by means of molecular dynamics and velocity loading. Results show that the crack growth process and micro deformation mechanism of single crystal γ-TiAl alloy under cyclic loading were divided into three stages. The mechanical properties are affected by the defects of crack tip lattice distortion,prismatic dislocation slip, Lomer-cottrell dislocation group formation,stacking fault start, deformation twin, etc. and their interaction results in the loading process. The mechanism of crack growth and the mechanism of plastic deformation at different stages were quite different. The research results provide a strong theoretical guidance for improving the performance of γ-TiAlalloys under complex external loading conditions
Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae
The Target of Rapamycin kinase Complex I (TORC1) is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans) to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1) during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay—including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks