12 research outputs found

    Vortex-Induced Vibration of a Marine Riser: Numerical Simulation and Mechanism Understanding

    Get PDF
    Marine riser is a key equipment connecting a floating platform and a seabed wellhead. Vortex-induced vibration (VIV) is the main cause of the fatigue damage of the riser. The prediction of marine riser VIV is very difficult because of its strong non-linearity, instability and uncertainty. In recent years, many numerical models of VIV of marine riser have been developed to explore the mechanism of marine riser VIV, providing scientific theoretical basis and practical engineering methods for vibration control and engineering design of marine riser. Combined with the authors’ own recent research, this chapter discusses the research progress on marine riser VIV in the ocean engineering, including phenomenon mechanism analysis and different numerical research methods

    Shark Skin—An Inspiration for the Development of a Novel and Simple Biomimetic Turbulent Drag Reduction Topology

    No full text
    In this study, a novel but simple biomimetic turbulent drag reduction topology is proposed, inspired by the special structure of shark skin. Two effective, shark skin-inspired, ribletted surfaces were designed, their topologies were optimized, and their excellent drag reduction performances were verified by large eddy simulation. The designed riblets showed higher turbulent drag reduction behavior, e.g., 21.45% at Re = 40,459, compared with other experimental and simulated reports. The effects of the riblets on the behavior of the fluid flow in pipes are discussed, as well as the mechanisms of fluid drag in turbulent flow and riblet drag reduction. Riblets of various dimensions were analyzed and the nature of fluid flow over the effective shark skin surface is illustrated. By setting up the effective ribletted surface on structure’s surface, the shark skin-inspired, biomimetic, ribletted surface effectively reduced friction resistance without external energy support. This method is therefore regarded as the most promising drag reduction technique

    Anti-Collision Assessment and Prediction Considering Material Corrosion on an Offshore Protective Device

    No full text
    Corrosion deterioration of steel can heavily degrade the performance of marine and offshore structures. A typical steel protective device, which has worked for a dozen years in a river estuary, is selected as the research object. Its current corrosion response is measured on site and its further corrosive response is predicted based on measurement data and the structure’s current state. Nonlinear finite element method is utilized to analyze the degradation of the protective device’s anti-collision performance. Meanwhile the rubber buffer effect has been investigated for its anti-collision on the protective device. A prediction method is proposed that can accurately forecast degradation of the anti-collision performance of a protective device as time progresses

    Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure

    No full text
    The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries

    Basic Experimental Study of Plasticity Material for Coal Rock Fracture Grouting Based on RSM-PCA Technology

    No full text
    The internal fractures in coal and rock mass are important factors affecting the safety of underground engineering such as coalbed methane exploitation, so the comprehensive properties of materials used to seal the fractures are particularly critical. In this paper, firstly, the indexes of the main factors affecting the plugging material (viscosity, bleeding rate, setting time, and strength) were analyzed. Then, the sensitivity of the materials used to seal the fractures was studied and discussed using a principal component analysis and response surface analysis (RSM-PCA). The primary conclusions are as follows: (1) Bleed rate and setting time were the first principal components affecting the comprehensive properties of the plugging materials, and compressive strength was the second principal component. (2) The regression equation was established to characterize the comprehensive properties of the integrated plugging materials, and the optimal mix ratio was 34% of cement content, 11% of sand content, and 0.53 of the W/C. (3) The microscopic results showed that the silicate minerals in the consolidated body grow in a bridging manner and formed a mixed gel with cement hydration product to fill the pores and microcracks and improved the interface transition zone

    Application of Clustering and Stepwise Discriminant Analysis Based on Hydrochemical Characteristics in Determining the Source of Mine Water Inrush

    No full text
    In order to explore the law of groundwater evolution, the water source connection between faults and aquifers and the main sources of mine water inrush in the deep mining area of Yangcheng Coal Mine in Jining City, 40 groups of hydrochemical samples were collected and analyzed by Piper Diagram and Durov Diagram. The results showed that the fluidity of groundwater developing to the deep became weaker, the value of total dissolved solids (TDS) became larger. So, the roof and floor of coal seam were more similar in water quality types due to the conduction of faults. Using principal component analysis (PCA) to the raw data, two principal components were extracted, and the principal component scores were used as clustering variables for hierarchical cluster analysis (HCA), 5 groups of abnormal water samples were eliminated and 3 clustering groups M1, M2 and M3 were obtained from the other water samples on the tree diagram. The results showed that the combination of HCA and hydrochemical analysis was more effective in screening water samples, and the 3 clustering groups could be qualified samples to represent 3 major aquifers (Taiyuan Formation limestone aquifer, Shanxi Formation sandstone aquifer and Ordovician limestone aquifer). Finally, taking M1, M2 and M3 as grouping variables, the discriminant functions f1, f2 and f3 of the 3 aquifers were obtained, the results of stepwise discrimination analysis (SDA) showed that the discrimination model established by using 25 groups of standard water samples could discriminate the known water samples with the correct rate of 96%, 10 groups of unknown water samples collected at the fault are identified as Taiyuan Formation limestone water samples, which was consistent with the classification results of HCA, proving that the water inrush of fault DF53 was from Taiyuan Formation limestone aquifer, while the fault had little influence on Ordovician limestone aquifer

    Influence of Synthesis Conditions on Microstructure and NO2 Sensing Properties of WO3 Porous Films Synthesized by Non-Hydrolytic Sol–Gel Method

    No full text
    Nanostructured tungsten trioxide porous films were prepared by a non-hydrolytic sol–gel method following the inorganic route in which ethanol and PEG were used as the oxygen-donor and structure-directing reagent, respectively. The effects of aging time of the precursor solution, PEG content, and calcination temperature on the structure, morphology, and NO2 sensing properties of WO3 films were systematically investigated by using the techniques of X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and gas sensing measurements. The results demonstrated that a series of WO3 films with different microstructures could be obtained by manipulating the synthesis parameters. Furthermore, a suitable synthesis condition of WO3 films for NO2 sensing application was determined

    Maneuverability and Hydrodynamics of a Tethered Underwater Robot Based on Mixing Grid Technique

    No full text
    The maneuverability and hydrodynamic performance of the tethered underwater robot in a uniform flow field is investigated. In this research, a tethered underwater robot symmetrically installed with NACA66 hydrofoils and Ka 4-70/19A ducted propellers around its main body is first constructed. The method of overlapping grid combined with sliding mesh is applied in the numerical simulations, and the principle of relative motion is adopted to describe the hydrodynamic responses of the tethered underwater robot during the robot manipulation. The reliability of the CFD methods applied in this research is verified by experimental results, and the comparison between numerical and experimental ones shows that there is very little difference being found. The numerical results indicate that computational cost due to the research’s large-scale domain can be effectively reduced by the adopted numerical methods, hydrofoils’ control effect is greatly influenced by the towing speeds, and thrusts issued from the ducted propellers are related to the tethered underwater robot’s position and towing speed
    corecore