38 research outputs found

    Numerical and experimental investigation on self-synchronization of two eccentric rotors in the vibration system

    Get PDF
    In this paper, we study the coupling dynamic characteristic of a single mass vibration machine driven by two eccentric rotors rotating oppositely. According to the coordinate of rotor flux, we deduce the electromagnetic torque of an induction motor in the steady state operation. From three ways of numerical analysis, model simulation and experiment, we discuss the coupling dynamic characteristic by using the actual parameters of this vibration machine. The results show that when the synchronization condition is satisfied, not only the vibration synchronization transmission can be achieved, but also the synchronization motion of the two motors with different power supply frequencies also can be achieved. The phase of the bigger mass-radius product lags behind that of the smaller one, the phase of the bigger distance between the rotation center of eccentric rotor and the mass center of the vibration rigid body lags behind that of the smaller one, and the phase difference decreases with increasing the synchronization velocity. We present a new method that adjusting the power supply frequencies of the two motors to make the vibration system with different structure parameters carry out the 0 phase difference, and its feasibility is verified by experiment

    The effect of the revision of intangible assets accounting standards on enterprise technology innovation

    Get PDF
    Against the institutional background of building an innovative country, this article constructs the influence mechanism of the accounting standards for intangible assets for enterprise technology innovation. We select panel data from the Shanghai Stock Exchange and Shenzhen Stock Exchange from 2002 to 2015. We focus on the two dimensions of innovation input and innovation output and use Poisson regression, negative binomial regression, zero expansion regression, and other methods to examine the effects of the revision of the intangible assets accounting standards on enterprise technology innovation. Our research reveals the following: (1) In general, the revision of the intangible assets accounting standards can promote enterprises’ technological innovation activities; (2) This effect is heterogeneous by ownership: before the revision of accounting standards for intangible assets, state-owned enterprises had more innovation input than non-state-owned enterprises, but the innovation output of nonstate-owned enterprises has become greater than that of stateowned enterprises even though the policy only significantly improved the innovation output of the latter; and (3) The system lacks a continuous effect. The revision of the intangible assets accounting standards has only a one-year lag effect on the incentive effect of enterprise innovation input activities, mainly because enterprise innovation input has only a one- to two-year lag effect on output. The implementation of this system has not changed the status quo that Chinese patent rights are based on applied short-term technology research and development. Based on the findings, this article proposes some pertinent policy suggestions

    Synchronization and coupling dynamic characteristics of a dual-rotors exciter

    Get PDF
    In this work, some theoretical analyses, numerical simulations and experimental results on synchronization of a dual-rotors exciter are given. The exciter is made up of two rotors with eccentric masses (REMs) respectively driven by two DC motors with common axis. By adjusting the phase difference between two REMs to change the response amplitude, the decoupling between response amplitude and exciting frequency can be realized. The motion equations of the vibration system are established by using Lagrange equation, and the dimensionless coupling equations of that are obtained by applying the average method of small parameter. According to the existence condition of the zero solution of the dimensionless coupling equations, the synchronization condition of the vibration system is obtained. The stability condition of the vibration system implementing synchronization motion is acquired based on the principle of Hamilton. Through the comparison between numerical simulations and experimental results, the validity of theoretical analyses is proved, which helps the design of the dual-rotors exciter

    Numerical and experimental investigation on self-synchronization of two eccentric rotors in the vibration system

    Get PDF
    In this paper, we study the coupling dynamic characteristic of a single mass vibration machine driven by two eccentric rotors rotating oppositely. According to the coordinate of rotor flux, we deduce the electromagnetic torque of an induction motor in the steady state operation. From three ways of numerical analysis, model simulation and experiment, we discuss the coupling dynamic characteristic by using the actual parameters of this vibration machine. The results show that when the synchronization condition is satisfied, not only the vibration synchronization transmission can be achieved, but also the synchronization motion of the two motors with different power supply frequencies also can be achieved. The phase of the bigger mass-radius product lags behind that of the smaller one, the phase of the bigger distance between the rotation center of eccentric rotor and the mass center of the vibration rigid body lags behind that of the smaller one, and the phase difference decreases with increasing the synchronization velocity. We present a new method that adjusting the power supply frequencies of the two motors to make the vibration system with different structure parameters carry out the 0 phase difference, and its feasibility is verified by experiment

    Numerical and experimental investigation on self-synchronization of two eccentric rotors in the vibration system

    Get PDF
    In this paper, we study the coupling dynamic characteristic of a single mass vibration machine driven by two eccentric rotors rotating oppositely. According to the coordinate of rotor flux, we deduce the electromagnetic torque of an induction motor in the steady state operation. From three ways of numerical analysis, model simulation and experiment, we discuss the coupling dynamic characteristic by using the actual parameters of this vibration machine. The results show that when the synchronization condition is satisfied, not only the vibration synchronization transmission can be achieved, but also the synchronization motion of the two motors with different power supply frequencies also can be achieved. The phase of the bigger mass-radius product lags behind that of the smaller one, the phase of the bigger distance between the rotation center of eccentric rotor and the mass center of the vibration rigid body lags behind that of the smaller one, and the phase difference decreases with increasing the synchronization velocity. We present a new method that adjusting the power supply frequencies of the two motors to make the vibration system with different structure parameters carry out the 0 phase difference, and its feasibility is verified by experiment

    Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area

    Get PDF
    In order to solve the problems that restrict the efficient development of coalbed methane resources under the conditions of soft and low permeability outburst coal seams in Huainan Mining Area, such as complex coal seam structure, multi-source gas emission, rapid decline of drainage flow, high rock roadway and drilling costs, and low (ultra-low) concentration coalbed methane utilization rate, six key technologies suitable for the coordinated development mode of coal and coalbed methane under the condition of coal seam group mining in Huainan mining area are put forward, namely: coalbed methane extraction technology of ground level staged fracturing wells, shield rapid construction technology of coalbed methane extraction roadways, enhanced extraction technology of underground soft coalbed methane, coalbed methane extraction technology of pressure relief in ground mining area, the construction technology of "replacing roadways with holes", and cascade utilization technology of low concentration coalbed methane. The application of supporting key technologies shows that staged fracturing technology and refined drainage and production technology of roof horizontal wells in broken and soft coal seam have effectively improved the pre pumping production of coalbed methane; The full face hard rock roadheader in deep coal mine roadway greatly improves the roadway excavation efficiency, realizing the automation and less humanization of hard rock excavation; Sand adding of hydraulic fracturing and ultra-high hydraulic slotting have realized pressure relief and permeability enhancement in large areas underground coal mine; Type III and IV surface mining area wells can replace the roof high drainage roadway in the treatment of pressure relief gas in coal seam group mining, and reduce the coalbed methane drainage intensity of other measures; The technology of "replacing roadways with holes" has significantly improved the quality of successful directional drilling at middle and high levels in complex roof; Cascade utilization technology of low concentration coalbed methane has greatly reduced the emission of coalbed methane. The six key technologies have guaranteed the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Six key technologies ensure the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Finally, in view of the problems such as high operation cost, low production, small scope of hydraulic fracturing coal reservoir reconstruction technology for surface horizontal wells, and the risk of breakage of mining wells, and small scale of cascade utilization of ultra-low concentration coalbed methane, the development direction of deep CBM precise geological guidance, super large scale efficient reservoir volume transformation, pumping effect evaluation technology, stable and continuous pumping technology of surface wells in mining areas, underground large area intelligent hydraulic enhanced permeability technology, "one well with multiple uses" collaborative pumping CBM technology, and full concentration CBM comprehensive utilization technology are proposed

    High Steep Rock Slope Instability Mechanism Induced by the Pillar Deterioration in the Mountain Mining Area

    No full text
    In hilly regions, landslides or slope failures are very common phenomena, when underground mineral resources are excavated. In this study, some landslide disasters in a mountain mining area were analyzed. The engineering geological and instability reason were investigated. The numerical simulation of a high steep rock slope disturbed by a room and pillar mine was established. The failure process of a high steep rock slope induced by the pillar deterioration was analyzed to reveal the characteristics of deformation and sliding. The results show that the pillar plays an important role in maintaining the stability of the slope, if the pillar can support the overlying rock mass, only a tiny deformation will be induced. When the pillar fails and the roof caves, the overlying rock mass above the room and pillar goaf will rapidly subside, and the crack evolution of slope is induced, forming the potential slip surface. The landslide mass gradually moves. When the rock mass at the middle and lower of the slope is squeezed out, slope sliding will be induced. The failure process can be divided into four stages as follow: tiny displacement is caused by the mining, roof collapse is caused by the pillar failure, the potential slip surface is formed from the crack evolution; the slope sliding is induced by the fracturing of rock mass at the middle and lower of the slope
    corecore