42 research outputs found

    GPS Path Tracking Control of Military Unmanned Vehicle Based on Preview Variable Universe Fuzzy Sliding Mode Control

    No full text
    In the process of the continuous development and improvement of modern military systems, military unmanned vehicles play an important role in field reconnaissance and strategic deployment. In this paper, the precise tracking algorithm of a military unmanned vehicle, based on GPS navigation, is studied. Firstly, the optimal preview point is obtained according to the data points of a differential GPS signal. Secondly, the pure tracking algorithm is used to calculate the demand steering angle, and a variable universe fuzzy sliding mode controller is designed to control the lateral motion of the vehicle, which is verified by the joint simulation platform of Simulink and CarSim, under multiple working conditions. Finally, the actual vehicle is verified by using the Autobox platform. The results show that the lateral motion control of path tracking designed in this paper can achieve an accurate and effective control effect, and has real-time performance for engineering applications

    Optimization Model of Engineering Specifications Based on Grey Quality Gain-Loss Function

    No full text
    In view of the fact that the target values of some quality characteristics are grey, the grey quality gain-loss function model was applied in the analysis of the quality characteristics. At the same time, based on the analysis of engineering specifications and process capability, an optimization model of engineering specifications was proposed to minimize the expected total loss of each product and maximize the expected compensation with inspection costs, scrap costs and grey quality gain-loss into consideration. The optimal engineering specification can be obtained by using the optimization model. Through the example analysis and its application in dam concrete construction, the practicability of the model is verified, which provides an important reference for the research of the new theory of dam concrete construction quality control

    GPS Path Tracking Control of Military Unmanned Vehicle Based on Preview Variable Universe Fuzzy Sliding Mode Control

    No full text
    In the process of the continuous development and improvement of modern military systems, military unmanned vehicles play an important role in field reconnaissance and strategic deployment. In this paper, the precise tracking algorithm of a military unmanned vehicle, based on GPS navigation, is studied. Firstly, the optimal preview point is obtained according to the data points of a differential GPS signal. Secondly, the pure tracking algorithm is used to calculate the demand steering angle, and a variable universe fuzzy sliding mode controller is designed to control the lateral motion of the vehicle, which is verified by the joint simulation platform of Simulink and CarSim, under multiple working conditions. Finally, the actual vehicle is verified by using the Autobox platform. The results show that the lateral motion control of path tracking designed in this paper can achieve an accurate and effective control effect, and has real-time performance for engineering applications

    Light-Load Efficiency Optimization for an LCC-Parallel Compensated Inductive Power Transfer Battery Charger

    No full text
    Wireless power transfer (WPT) techniques have gained wide acceptance across a range of battery charging applications such as cell phones, cardiac pacemakers, and electric vehicles. In a wireless battery charging system, a constant current/constant voltage (CC/CV) charging strategy, regardless of the variation of the battery load which may roughly range from a few ohms to several hundred ohms, is typically adopted to ensure the safety, durability, and performance of the battery. However, system efficiency drops significantly as the load increases in CV mode, especially at very light-load conditions. This paper proposes an efficiency optimization method for an LCC-parallel compensated inductive power transfer (IPT) battery charging system without the help of any additional power converter and control method. The equivalent circuit and resonant conditions of the LCC-parallel compensation topology are firstly analyzed to achieve the load-independent CV output at a zero phase angle (ZPA) operating frequency. Over the full range of CV charging mode, the efficiency of the LCC-parallel resonant tank circuit is analyzed and optimized. An IPT battery charger prototype with 48 V charging voltage and 1 A charging current is implemented. A measured DC–DC transfer efficiency of greater than 90.48% is achieved during the whole CV charging profile

    Integrated Ground-Based SAR Interferometry, Terrestrial Laser Scanner, and Corner Reflector Deformation Experiments

    No full text
    An integrated sensor system comprised of a terrestrial laser scanner (TLS), corner reflectors (CRs), and high precision linear rail is utilized to validate ground-based synthetic aperture radar (GB-SAR) interferometric micro-displacement measurements. A rail with positioning accuracy of 0.1 mm is deployed to ensure accurate and controllable deformation. The rail is equipped with a CR on a sliding platform for mobility. Three smaller CRs are installed nearby, each with a reflective sticker attached to the CR’s vertex; the CRs present as high-amplitude points both in the GB-SAR images and the TLS point cloud to allow for accurate data matching. We analyze the GB-SAR zero-baseline repeated rail differential interferometry signal model to obtain 2D interferograms of the test site in time series, and then use TLS to obtain a 3D surface model. The model is matched with interferograms to produce more intuitive 3D products. The CR displacements can also be extracted via surface reconstruction algorithm. Finally, we compared the rail sensor measurement and TLS results to optimize coherent scatterer selection and filter the data. The proposed method yields accurate target displacement results via quantitative analysis of GB-SAR interferometry

    Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography.

    No full text
    The objective of this study was to develop a low-cost method for rice growth information obtained quickly using digital images taken with smartphone. A new canopy parameter, namely, the canopy volume parameter (CVP), was proposed and developed for rice using the leaf area index (LAI) and plant height (PH). Among these parameters, the CVP was selected as an optimal parameter to characterize rice yields during the growth period. Rice canopy images were acquired with a smartphone. Image feature parameters were extracted, including the canopy cover (CC) and numerous vegetation indices (VIs), before and after image segmentation. A rice CVP prediction model in which the CC and VIs served as independent variables was established using a random forest (RF) regression algorithm. The results revealed the following. The CVP was better than the LAI and PH for predicting the final yield. And a CVP prediction model constructed according to a local modelling method for distinguishing different types of rice varieties was the most accurate (coefficient of determination (R2) = 0.92; root mean square error (RMSE) = 0.44). These findings indicate that digital images can be used to track the growth of crops over time and provide technical support for estimating rice yields
    corecore