24 research outputs found

    Label-free immunoassay for porcine circovirus type 2 based on excessively tilted fiber grating modified with staphylococcal protein A

    Get PDF
    Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity

    CoLa-Diff:Conditional Latent Diffusion Model for Multi-modal MRI Synthesis

    No full text
    MRI synthesis promises to mitigate the challenge of missing MRI modality in clinical practice. Diffusion model has emerged as an effective technique for image synthesis by modelling complex and variable data distributions. However, most diffusion-based MRI synthesis models are using a single modality. As they operate in the original image domain, they are memory-intensive and less feasible for multi-modal synthesis. Moreover, they often fail to preserve the anatomical structure in MRI. Further, balancing the multiple conditions from multi-modal MRI inputs is crucial for multi-modal synthesis. Here, we propose the first diffusion-based multi-modality MRI synthesis model, namely Conditioned Latent Diffusion Model (CoLa-Diff). To reduce memory consumption, we perform the diffusion process in the latent space. We propose a novel network architecture, e.g., similar cooperative filtering, to solve the possible compression and noise in latent space. To better maintain the anatomical structure, brain region masks are introduced as the priors of density distributions to guide diffusion process. We further present auto-weight adaptation to employ multi-modal information effectively. Our experiments demonstrate that CoLa-Diff outperforms other state-of-the-art MRI synthesis methods, promising to serve as an effective tool for multi-modal MRI synthesis.</p

    Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics

    No full text
    High-performance flexible electronics has attracted much attention in recent years due to potential applications in flexible displays, artificial skin, radio frequency identification, sensor tapes, etc. Various materials such as organic and inorganic semiconductor nanowires, carbon nanotubes, graphene, etc. have been explored as the active semiconductor components for flexible devices. Among them, inorganic semiconductor nanowires are considered as highly promising materials due to their relatively high carrier mobility, reliable control on geometry and electronic properties, and cost-effective synthesis processes. In this review, recent progress on the assembly of high-performance inorganic semiconductor nanowires and their applications for large-scale flexible electronics will be summarized. In particular, nanowire-based Integrated circuitry and high-frequency electronics will be highlighted

    Lysophosphatidic Acid Is Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix Metalloproteinase-9 Expression via LPA2 in Macrophages

    No full text
    Lysophosphatidic acid (LPA), one of the simplest phospholipid signaling molecules, participates in formation and disruption of atherosclerotic plaque. Matrix metalloproteinases (MMPs) contribute to atherosclerotic plaque rupture by involving in extracellular matrix (ECM) degradation and then thinning fibrous cap. Our previous study demonstrated that macrophage-derived MMP-9 was associated with coronary plaque instability, but the relationship between LPA and MMP-9 remains unclear. The present work therefore aimed at elucidating association between LPA and MMP-9 and the regulation mechanism of LPA on MMP-9 in macrophages. We found that plasma LPA and MMP-9 levels were correlated positively (r = 0.31, P &lt; 0.05) and both elevated significantly in patients with acute myocardial infarct (AMI). Consistent with peripheral blood levels, histochemical staining indicated that autotaxin (ATX), LPA-producing ectoenzyme, and MMP-9 were expressed frequently in the necrotic core and fibrous cap of human unstable plaques, which might increase the instability of plaque. Experiments in vitro were done with THP-1-derived macrophages and showed that LPA enhanced the expression, secretion and activity of MMP-9 in a time- and dose-dependent manner. Induction of LPA on pro-MMP-9 and active-MMP-9 was confirmed in human peripheral blood monocyte-derived macrophages. PDTC, NF-κB inhibitor, but not inhibitor of AP-1 and PPARγ, effectively prevented LPA-induced MMP-9 expression and NF-κB p65 siRNA decreased MMP-9 transcription, confirming that LPA might induce MMP-9 elevation by activating NF-κB pathway. In addition, knockdown of LPA2 attenuated LPA-induced MMP-9 expression and nucleus p65 levels. These findings revealed that LPA upregulated the expression of MMP-9 through activating NF-κB pathway in the LPA2 dependent manner, hence blocking LPA receptors signaling may provide therapeutic strategy to target plaque destabilization

    Growth inhibition of mesenchymal stem cells by aspirin: involvement of the wnt/

    No full text
    SUMMARY 1. Mesenchymal stem cell (MSC) therapy is drawing increasing attention in cardiology. However, the effect of aspirin, an assistant medication used extensively in the treatment of cardiovascular diseases, on MSC is not clear. 2. In the present study, we investigated the effect of aspirin on the growth of MSC in vitro and the underlying mechanism of its action

    Hydrogen Sulfide Promotes Cardiomyocyte Proliferation and Heart Regeneration via ROS Scavenging

    No full text
    Neonatal mouse hearts can regenerate completely in 21 days after cardiac injury, providing an ideal model to exploring heart regenerative therapeutic targets. The oxidative damage by Reactive Oxygen Species (ROS) is one of the critical reasons for the cell cycle arrest of cardiomyocytes (CMs), which cause mouse hearts losing the capacity to regenerate in 7 days or shorter after birth. As an antioxidant, hydrogen sulfide (H2S) plays a protective role in a variety of diseases by scavenging ROS produced during the pathological processes. In this study, we found that blocking H2S synthesis by PAG (H2S synthase inhibitor) suspended heart regeneration and CM proliferation with ROS deposition increase after cardiac injury (myocardial infarction or apex resection) in 2-day-old mice. NaHS (a H2S donor) administration improved heart regeneration with CM proliferation and ROS elimination after myocardial infarction in 7-day-old mice. NaHS protected primary neonatal mouse CMs from H2O2-induced apoptosis and promoted CM proliferation via SOD2-dependent ROS scavenging. The oxidative DNA damage in CMs was reduced with the elimination of ROS by H2S. Our results demonstrated for the first time that H2S promotes heart regeneration and identified NaHS as a potent modulator for cardiac repair

    A two-step phase-shifting algorithm dedicated to fringe projection profilometry

    No full text
    © 2020 Improving the time efficiency of fringe projection profilometry (FPP) is an attractive problem. For FPP using phase-shifting, it is desired to improve the efficiency by reducing the step number for phase retrieval. This paper proposes a two-step phase-shifting algorithm dedicated to FPP. Considering the physical process of FPP, the captured fringe image is formulated with two variables, i.e. surface reflectance and phase value. And a phase shift is introduced to get the two equations, which lead to the close-form solution for phase calculation. Then the phase error due to ambient light is analyzed via a line-circle model, and an algorithm of refining the phase calculation is proposed based on the estimation of the actual fringe contrast. The validity of the proposed approach is demonstrated with experiments
    corecore