215 research outputs found

    Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis

    Get PDF
    Aiming at solving large-scale learning problems, this paper studies distributed optimization methods based on the alternating direction method of multipliers (ADMM). By formulating the learning problem as a consensus problem, the ADMM can be used to solve the consensus problem in a fully parallel fashion over a computer network with a star topology. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by the slowest workers. This is particularly true in a heterogeneous network where the computing nodes experience different computation and communication delays. In this paper, we propose an asynchronous distributed ADMM (AD-AMM) which can effectively improve the time efficiency of distributed optimization. Our main interest lies in analyzing the convergence conditions of the AD-ADMM, under the popular partially asynchronous model, which is defined based on a maximum tolerable delay of the network. Specifically, by considering general and possibly non-convex cost functions, we show that the AD-ADMM is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points as long as the algorithm parameters are chosen appropriately according to the network delay. We further illustrate that the asynchrony of the ADMM has to be handled with care, as slightly modifying the implementation of the AD-ADMM can jeopardize the algorithm convergence, even under a standard convex setting.Comment: 37 page

    Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures

    Get PDF
    Vertically stacked van der Waals heterostructures constitute a promising platform for providing tailored band alignment with enhanced excitonic systems. Here we report observations of neutral and charged interlayer excitons in trilayer WSe2-MoSe2-WSe2 van der Waals heterostructures and their dynamics. The addition of a WSe2 layer in the trilayer leads to significantly higher photoluminescence quantum yields and tunable spectral resonance compared to its bilayer heterostructures at cryogenic temperatures. The observed enhancement in the photoluminescence quantum yield is due to significantly larger electron-hole overlap and higher light absorbance in the trilayer heterostructure, supported via first-principle pseudopotential calculations based on spin-polarized density functional theory. We further uncover the temperature- and power-dependence, as well as time-resolved photoluminescence of the trilayer heterostructure interlayer neutral excitons and trions. Our study elucidates the prospects of manipulating light emission from interlayer excitons and designing atomic heterostructures from first-principles for optoelectronics.Comment: 25 pages, 5 figures(Maintext). 9 pages, 7 figures(Supplementary Information). - Accepted for publication in npg: 2D materials and applications and reformatted to its standard. - Updated co-authors and references. - Title and abstract are modified for clarity. - Errors have been corrected, npg: 2D materials and applications (2018
    • …
    corecore