62 research outputs found

    BiGSeT: Binary Mask-Guided Separation Training for DNN-based Hyperspectral Anomaly Detection

    Full text link
    Hyperspectral anomaly detection (HAD) aims to recognize a minority of anomalies that are spectrally different from their surrounding background without prior knowledge. Deep neural networks (DNNs), including autoencoders (AEs), convolutional neural networks (CNNs) and vision transformers (ViTs), have shown remarkable performance in this field due to their powerful ability to model the complicated background. However, for reconstruction tasks, DNNs tend to incorporate both background and anomalies into the estimated background, which is referred to as the identical mapping problem (IMP) and leads to significantly decreased performance. To address this limitation, we propose a model-independent binary mask-guided separation training strategy for DNNs, named BiGSeT. Our method introduces a separation training loss based on a latent binary mask to separately constrain the background and anomalies in the estimated image. The background is preserved, while the potential anomalies are suppressed by using an efficient second-order Laplacian of Gaussian (LoG) operator, generating a pure background estimate. In order to maintain separability during training, we periodically update the mask using a robust proportion threshold estimated before the training. In our experiments, We adopt a vanilla AE as the network to validate our training strategy on several real-world datasets. Our results show superior performance compared to some state-of-the-art methods. Specifically, we achieved a 90.67% AUC score on the HyMap Cooke City dataset. Additionally, we applied our training strategy to other deep network structures, achieving improved detection performance compared to their original versions, demonstrating its effective transferability. The code of our method will be available at https://github.com/enter-i-username/BiGSeT.Comment: 13 pages, 13 figures, submitted to IEEE TRANSACTIONS ON IMAGE PROCESSIN

    LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention

    Full text link
    We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning on 8 A100 GPUs. Specifically, we adopt a set of learnable adaption prompts, and prepend them to the input text tokens at higher transformer layers. Then, a zero-init attention mechanism with zero gating is proposed, which adaptively injects the new instructional cues into LLaMA, while effectively preserves its pre-trained knowledge. With efficient training, LLaMA-Adapter generates high-quality responses, comparable to Alpaca with fully fine-tuned 7B parameters. Furthermore, our approach can be simply extended to multi-modal input, e.g., images, for image-conditioned LLaMA, which achieves superior reasoning capacity on ScienceQA. We release our code at https://github.com/ZrrSkywalker/LLaMA-Adapter.Comment: Work in Progress. Code is available at https://github.com/ZrrSkywalker/LLaMA-Adapte

    Nutritional Interventions Improved Rumen Functions and Promoted Compensatory Growth of Growth-Retarded Yaks as Revealed by Integrated Transcripts and Microbiome Analyses

    Get PDF
    Growth retardation reduces the incomes of livestock farming. However, effective nutritional interventions to promote compensatory growth and the mechanisms involving digestive tract microbiomes and transcripts have yet to be elucidated. In this study, Qinghai plateau yaks, which frequently suffer from growth retardation due to malnutrition, were used as an experimental model. Young growth-retarded yaks were pastured (GRP), fed basal ration (GRB), fed basal ration addition cysteamine hydrochloride (CSH; GRBC) or active dry yeast (ADY; GRBY). Another group of growth normal yak was pastured as a positive control (GNP). After 60-day nutritional interventions, the results showed that the average daily gain (ADG) of GRB was similar to the level of GNP, and the growth rates of GRBC and GRBY were significantly higher than the level of GNP (P < 0.05). Basal rations addition of CSH or ADY either improved the serum biochemical indexes, decreased serum LPS concentration, facilitated ruminal epithelium development and volatile fatty acids (VFA) fermentation of growth-retarded yaks. Comparative transcriptome in rumen epithelium between growth-retarded and normal yaks identified the differentially expressed genes mainly enriched in immune system, digestive system, extracellular matrix and cell adhesion pathways. CSH addition and ADY addition in basal rations upregulated ruminal VFA absorption (SLC26A3, PAT1, MCT1) and cell junction (CLDN1, CDH1, OCLN) gene expression, and downregulated complement system (C2, C7) gene expression in the growth-retarded yaks. 16S rDNA results showed that CSH addition and ADY addition in basal rations increased the rumen beneficial bacterial populations (Prevotella_1, Butyrivibrio_2, Fibrobacter) of growth-retarded yaks. The correlation analysis identified that ruminal VFAs and beneficial bacteria abundance were significantly positively correlated with cell junction and VFA absorption gene expressions and negatively correlated with complement system gene expressions on the ruminal epithelium. Therefore, CSH addition and ADY addition in basal rations promoted rumen health and body growth of growth-retarded yaks, of which basal ration addition of ADY had the optimal growth-promoting effects. These results suggested that improving nutrition and probiotics addition is a more effective method to improve growth retardation caused by gastrointestinal function deficiencies

    A universal miniaturized electrochemical sensing platform and its applications

    No full text
    We have developed a portable universal miniaturized electrochemical sensing platform, which integrates with a microelectronic sensor strip, that can perform various electrochemical and impedance sensing measurements. This sensing platform works as a miniaturized potentiostat that supports a number of potential waveforms such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which are the foundations of modern electrochemical research. This thesis first explains the theoretical basis and physical implementation of the sensing system, which covers design of hardware, embedded system and sensing algorithm. The circuit hardware principle is based on the three-electrode system widely used in electrochemistry experiments. Then the thesis discloses several real electrochemical applications that can be conducted using the sensing platform, which include measuring nitrate concentration and counting number of white blood cells. This inexpensive, portable device is also suitable for a variety of other applications, ranging from instant food/water quality examination to long-period environmental monitoring. We tested this lab-on-chip sensing platform under different circumstances and confirmed the results with other commercial analytic testing methods. Even with strip variation and external noise, the sensing platform discussed in this thesis can still produce a fairly accurate result

    code

    No full text
    <p>Algorithm Based on Three-Dimensional Region Growing Positron Emission Tomography-Computed Tomography Image Sequences of Pulmonary Nodule Segmentation</p> <p>code</p

    segmented images

    No full text
    <p>Algorithm Based on Three-Dimensional Region Growing Positron Emission Tomography-Computed Tomography Image Sequences of Pulmonary Nodule Segmentation</p> <p>segmented images</p

    Influence of Phase Compensation Method on Magnetizing Inrush Identification

    No full text
    The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of inrush current are analyzed firstly. Then the difference of two kinds of phase compensation methods, from star to delta and from delta to star connection, is compared. The second harmonic ratio of symmetric inrush is analyzed specially. Using inrush waveform of a real transformer, second harmonic ratio of phase inrush and that of differential current under two kinds of phase compensation methods are calculated respectively. Furthermore, based on the calculation results, the effect of two kinds of phase compensation methods on the inrush current identification is proved. The analysis and calculation results show that the second harmonic ratio of symmetric inrush caused by phase compensation method, from star to delta, is not low. Moreover, the split-phase blocking scheme should not be adopted for differential protection of from delta to star compensation. Using the phase current without compensation to calculate the ratio of second harmonic is inadvisable too
    • …
    corecore