10 research outputs found

    MicroRNA Expression Profile Analysis of <i>Chlamydomonas reinhardtii</i> during Lipid Accumulation Process under Nitrogen Deprivation Stresses

    No full text
    Lipid accumulation in various microalgae has been found induced by nitrogen deprivation, and it controls many different genes expression. Yet, the underlying molecular mechanisms still remain largely unknown. MicroRNA (miRNAs) play a critical role in post-transcriptional gene regulation. In this study, miRNAs were hypothesized involved in lipid accumulation by nitrogen deprivation. A deep-sequencing platform was used to explore miRNAs-mediated responses induced by nitrogen deprivation in Chlamydomonas reinhardtii. The eukaryotic orthologous groups of proteins (KOG) function in the predicted target genes of miRNA with response to nitrogen deprivation were mainly involved in signal transduction mechanisms, including transcription, lipid transport, and metabolism. A total of 109 miRNA were predicted, including 79 known miRNA and 30 novel miRNA. A total of 29 miRNAs showed significantly differential expressions after nitrogen deprivation, and most of them were upregulated. A total of 10 miRNAs and their targeting genes might involve in lipid transport and metabolism biological process. This study first investigates nitrogen deprivation-regulated miRNAs in microalgae and broadens perspectives on miRNAs importance in microalgae lipid accumulation via nitrogen deprivation. This study provides theoretical guidance for the application of microalgae in bio-oil engineering production

    Identification, function, and application of 3-ketosteroid Ī”1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons

    No full text
    Abstract Background 3-Ketosteroid-Ī”1-dehydrogenase (KstD) is a key enzyme in the metabolic pathway for chemical modifications of steroid hormones. Only a few KstDs have thus far been characterized biochemically and applied for the production of steroidal pharmaceutical intermediates. Three KstDs, KstD1, KstD2, and KstD3, were identified in Mycobacterium neoaurum DSM 1381, and they shared up to 99, 85 and 97% amino acid identity with previously reported KstDs, respectively. In this paper, KstDs from M. neoaurum DSM 1381 were investigated and exemplified their potential application for industrial steroid transformation. Results The recombinant KstD2 from Bacillus subtilis exhibited higher enzymatic activity when 4-androstene-3,17-dione (AD) and 22-hydroxy-23, 24-bisnorchol-4-ene-3-one (4HP) were used as the substrates, and resulted in specific activities of 22.40 and 19.19Ā UĀ mgāˆ’1, respectively. However, the specific activities of recombinant KstD2 from Escherichia coli, recombinant KstD1 from B. subtilis and E. coli, and recombinant KstD3, also fed with AD and 4HP, had significantly lower specific activities. We achieved up to 99% bioconversion rate of 1,4-androstadiene-3,17-dione (ADD) from 8Ā gĀ Lāˆ’1 AD after 15Ā h of fermentation using E. coli transformant BL21-kstD2. And in vivo transcriptional analysis revealed that the expression of kstD1 in M. neoaurum DSM 1381 increased by 60.5-fold with phytosterols as the substrate, while the mRNA levels of kstD2 and kstD3 were bearly affected by the phytosterols. Therefore, we attempted to create a 4HP producing strain without kstD1, which could covert 20Ā gĀ Lāˆ’1 phytosterols to 14.18Ā gĀ Lāˆ’1 4HP. Conclusions In vitro assay employing the recombinant enzymes revealed that KstD2 was the most promising candidate for biocatalysis in biotransformation of AD. However, in vivo analysis showed that the cellular regulation of kstD1 was much more active than those of the other kstDs in response to the presence of phytosterols. Based on the findings above, we successfully constructed E. coli transformant BL21-kstD2 for ADD production from AD and M. neoaurum DSM 1381 Ī”kstD1 strain for 4HP production using phytosterols as the substrate

    PTCL1-EstA from <em>Paenarthrobacter aurescens</em> TC1, a Candidate for Industrial Application Belonging to the VIII Esterase Family

    No full text
    The esterase PTCL1-EstA from Paenarthrobacter aurescens TC1 was expressed in Escherichia coli and characterized. An 1152 bp open reading frame encoding a 383 amino acid polypeptide was successfully expressed, the C-terminally His6-tagged PTCL1-EstA enzyme was purified, and the predicted molecular mass of the purified PTCL1-EstA was 40.6 kDa. The EstA family serine hydrolase PTCL1-EstA belongs to the esterase family VIII, contains esterase-labeled S-C-S-K sequences, and homologous class C beta-lactamase sequences. PTCL1-EstA favored p-nitrophenyl esters with C2-C6 chain lengths, but it was also able to hydrolyze long-chain p-nitrophenyl esters. Homology modelling and substrate docking predicted that Ser59 was an active site residue in PTCL1-EstA, as well as Tyr148, Ala325, and Asp323, which are critical in catalyzing the enzymatic reaction of p-nitrophenyl esters. PTCL1-EstA reached the highest specific activity against p-nitrophenyl butyrate (C4) at pH 7.0 and 45 Ā°C but revealed better thermal stability at 40 Ā°C and maintained high relative enzymatic activity and stability at pH 5.0ā€“9.0. Fermentation medium optimization for PTCL1-EstA increased the enzyme activity to 510.76 U/mL, tapping the potential of PTCL1-EstA for industrial production

    PTCL1-EstA from Paenarthrobacter aurescens TC1, a Candidate for Industrial Application Belonging to the VIII Esterase Family

    No full text
    The esterase PTCL1-EstA from Paenarthrobacter aurescens TC1 was expressed in Escherichia coli and characterized. An 1152 bp open reading frame encoding a 383 amino acid polypeptide was successfully expressed, the C-terminally His6-tagged PTCL1-EstA enzyme was purified, and the predicted molecular mass of the purified PTCL1-EstA was 40.6 kDa. The EstA family serine hydrolase PTCL1-EstA belongs to the esterase family VIII, contains esterase-labeled S-C-S-K sequences, and homologous class C beta-lactamase sequences. PTCL1-EstA favored p-nitrophenyl esters with C2-C6 chain lengths, but it was also able to hydrolyze long-chain p-nitrophenyl esters. Homology modelling and substrate docking predicted that Ser59 was an active site residue in PTCL1-EstA, as well as Tyr148, Ala325, and Asp323, which are critical in catalyzing the enzymatic reaction of p-nitrophenyl esters. PTCL1-EstA reached the highest specific activity against p-nitrophenyl butyrate (C4) at pH 7.0 and 45 Ā°C but revealed better thermal stability at 40 Ā°C and maintained high relative enzymatic activity and stability at pH 5.0ā€“9.0. Fermentation medium optimization for PTCL1-EstA increased the enzyme activity to 510.76 U/mL, tapping the potential of PTCL1-EstA for industrial production

    Biotransformation of Phytosterols to Androst-1,4-Diene-3,17-Dione by Mycobacterium sp. ZFZ Expressing 3-Ketosteroid-Ī”1-Dehydrogenase

    No full text
    As an important hormone drug intermediate, androst-1,4-diene-3,17-dione can be bio-converted from phytosterols. However, separation and purification in the downstream process are very difficult due to the similarity in structure and physiological characteristics between ADD and androstenedione (AD). This phenomenon was correlated to the insufficient enzyme activity of 3-ketosteroid-&Delta;1-dehydrogenase (KSDD), which specifically catalyzes the C1,2 dehydrogenation of AD. In order to obtain a highly purified ADD from phytosterols, the dehydrogenation effect of different kinds of KSDDs and the transcription effect of four promoter sequences on ksdd were analyzed in Mycobacterium sp. ZFZ (ZFZ), the cell host that transform phytosterols to AD in the oil-aqueous system. A tandem KSDD expression cassette containing strain ZFZ-2111 yielded 2.06 &plusmn; 0.09 g L&minus;1 ADD, with a molar ratio of ADD/AD at 41.47:1.00 in 120 h. In waste cooking oil-aqueous media, the proportion of ADD in the fermentation by ZFZ-2111 was 92%. The present study provides a reliable theoretical basis for the step-by-step transformation of phytosterols to ADD

    Exogenous probiotics improve fermentation quality, microflora phenotypes, and trophic modes of fermented vegetable waste for animal feed

    No full text
    The fermentation of leaf vegetable waste to produce animal feed reduces the environmental impact of vegetable production and transforms leaf vegetable waste into a commodity. We investigated the effect of exogenous probiotics and lignocellulose enzymes on the quality and microbial community of fermented feed (FF) produced from cabbage waste. The addition of exogenous probiotics resulted in increased crude protein (CP) content (p < 0.05), better odor (moderate organic acid and ethanol, with low ammoniaā€N, p < 0.05), and a lower relative abundance (RA) of pathogens (below 0.4%, p < 0.05) in FF, compared to without. With the addition of exogenous probiotics, only Pediococcus and Saccharomyces were enriched and symbiotic in FF; these were the keystone taxa to reduce the abundance of aerobic, formā€biofilms, and pathogenic microorganisms, resulting in an efficient anaerobic fermentation system characterized by facultative anaerobic and Gramā€positive bacterial communities, and undefined saprotroph fungal communities. Thus, inoculation of vegetable waste fermentation with exogenous probiotics is a promising strategy to enhance the biotransformation of vegetable waste into animal feed.</p

    MOESM4 of Identification, function, and application of 3-ketosteroid Ī”1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons

    No full text
    Additional file 4: Fig. S3. HPLC chromatogram comparison of the products from the transformation of 5Ā gĀ Lāˆ’1 of phytosterols at 30Ā Ā°C by strains Ī”kstD1 and M. neoaurum DSM 1381
    corecore