15 research outputs found

    Pore Size Distribution Characterization by Joint Interpretation of MICP and NMR: A Case Study of Chang 7 Tight Sandstone in the Ordos Basin

    No full text
    Pore size distribution characterization of unconventional tight reservoirs is extremely significant for an optimized extraction of petroleum from such reservoirs. In the present study, mercury injection capillary pressure (MICP) and low-field nuclear magnetic resonance (NMR) are integrated to evaluate the pore size distribution of the Chang 7 tight sandstone reservoir. The results show that the Chang 7 tight sandstones are characterized by high clay mineral content and fine grain size. They feature complex micro-nano-pore network system, mainly composed of regular primary intergranular pores, dissolved pores, inter-crystalline pores, and micro-fractures. Compared to the porosity obtained from MICP, the NMR porosity is closer to the gas-measured porosity (core analysis), and thus can more accurately describe the total pore space of the tight sandstone reservoirs. The pore throat distribution (PTD) from MICP presents a centralized distribution with high amplitude, while the pore size distribution (PSD) derived from NMR shows a unimodal distribution or bimodal distribution with low amplitude. It is notable that the difference between the PSD and the PTD is always related to the pore network composed of large pores connecting with narrow throats. The PSD always coincides very well with the PTD in the very tight non-reservoirs with a much lower porosity and permeability, probably due to the pore geometry that is dominated by the cylindrical pores. However, a significant inconsistency between the PSD and PTD in tight reservoirs of relatively high porosity and low permeability is usually associated with the pore network that is dominated by the sphere-cylindrical pores. Additionally, Euclidean distance between PSD and PTD shows a good positive correlation with pore throat ratio (PTR), further indicating that the greater difference of pore bodies and pore throats, the more obvious differentiation of two distributions. In summary, the MICP and NMR techniques imply the different profiles of pore structure, which has an important implication for deep insight into pore structure and accurate evaluation of petrophysical properties in the tight sandstone reservoir

    Logging identification and distribution characteristics of high-gamma sandstones in the 7th member of Triassic Yanchang Formation, Ordos Basin

    No full text
    A large number of sandstone interlayers were developed in the shale strata of the 7th member of the Triassic Yanchang Formation (Chang 7 member) in the Ordos Basin. These sandstone interlayers are frequently accompanied by abnormally high natural gamma values as high as 330.5 API. As a result, they are undistingui shable from shale on well profile. To characterize the high-gamma sandstones, the clastic rocks of the Chang 7 member were classified into fine sandstone, siltstone, argillaceous siltstone, silty mudstone, mudstone and shale according to grain size and structural characteristics. Conventional logging data were recalculated and combined into two new parameters—A and B. The new intersection chart composed of parameters A and B and natural gamma logging data can effectively distinguish and identify normal sandstone and high-gamma sandstone in the Chang 7 member. The plane distribution of cumulative thickness of high-gamma sandstone in the Chang 7 member shows that the high-gamma sandstone is mainly located in the southwest of the study area. The finger-like distribution of high-gamma sandstone from the edge to the center of the lake basin indicates that its formation may be related to the volcanic eruption during sedimentary period

    Plastidial Disproportionating Enzyme Participates in Starch Synthesis in Rice Endosperm by Transferring Maltooligosyl Groups from Amylose and Amylopectin to Amylopectin

    No full text
    Plastidial disproportionating enzyme1 (DPE1), an α-1,4-d-glucanotransferase, has been thought to be involved in storage starch synthesis in cereal crops. However, the precise function of DPE1 remains to be established. We present here the functional identification of DPE1 in storage starch synthesis in rice (Oryza sativa) by endosperm-specific gene overexpression and suppression. DPE1 overexpression decreased amylose content and resulted in small and tightly packed starch granules, whereas DPE1 suppression increased amylose content and formed heterogeneous-sized, spherical, and loosely packed starch granules. Chains with degree of polymerization (DP) of 6 to 10 and 23 to 38 were increased, while chains with DP of 11 to 22 were decreased in amylopectin from DPE1-overexpressing seeds. By contrast, chains with DP of 6 to 8 and 16 to 36 were decreased, while chains with DP of 9 to 15 were increased in amylopectin from DPE1-suppressed seeds. Changes in DPE1 gene expression also resulted in modifications in the thermal and pasting features of endosperm starch granules. In vitro analyses revealed that recombinant DPE1 can break down amylose into maltooligosaccharides in the presence of Glc, while it can transfer maltooligosyl groups from maltooligosaccharide to amylopectin or transfer maltooligosyl groups within and among amylopectin molecules in the absence of Glc. Moreover, a metabolic flow of maltooligosyl groups from amylose to amylopectin was clearly identifiable when comparing DPE1-overexpressing lines with DPE1-suppressed lines. These findings demonstrate that DPE1 participates substantially in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin

    Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network

    No full text
    NASA Physical Oceanography Program; NASA EPSCoR Program; NASA Space Grant; NOAA Sea GrantA self-organizing map (SOM) neural network was developed from Argo gridded datasets in order to estimate a subsurface temperature anomaly (STA) from remote sensing data. The SOM maps were trained using anomalies of sea surface temperature (SST), height (SSH), and salinity (SSS) data from Argo gridded monthly anomaly datasets, labeled with Argo STA data from 2005 through 2010, which were then used to estimate the STAs at different depths in the North Atlantic from the sea surface data. The estimated STA maps and time series were compared with Argo STAs including independent datasets for validation. In the Gulf Stream path areas, the STA estimations from the SOM algorithm show good agreement with in situ measurements taken from the surface down to 700-m depth, with a correlation coefficient larger than 0.8. Sensitivity of the SUM, when including salinity, shows that with SSS anomaly data in the SOM training process reveal the importance of SSS information, which can improve the estimation of STA in the subtropical ocean by up to 30%. In subpolar basins, the monthly climatology SST and SSH can also help to improve the estimation by as much as 40%. The STA time series for 1993-2004 in the midlatitude North Atlantic were estimated from remote sensing SST and altimetry time series using the SOM algorithm. Limitations for the SUM algorithm and possible error sources in the estimation are briefly discussed

    Plastidial Disproportionating Enzyme Participates in Starch Synthesis in Rice Endosperm by Transferring Maltooligosyl Groups from Amylose and Amylopectin to Amylopectin

    No full text
    Plastidial disproportionating enzyme1 (DPE1), an alpha-1,4-D-glucanotransferase, has been thought to be involved in storage starch synthesis in cereal crops. However, the precise function of DPE1 remains to be established. We present here the functional identification of DPE1 in storage starch synthesis in rice (Oryza sativa) by endosperm-specific gene overexpression and suppression. DPE1 overexpression decreased amylose content and resulted in small and tightly packed starch granules, whereas DPE1 suppression increased amylose content and formed heterogeneous-sized, spherical, and loosely packed starch granules. Chains with degree of polymerization (DP) of 6 to 10 and 23 to 38 were increased, while chains with DP of 11 to 22 were decreased in amylopectin from DPE1-overexpressing seeds. By contrast, chains with DP of 6 to 8 and 16 to 36 were decreased, while chains with DP of 9 to 15 were increased in amylopectin from DPE1-suppressed seeds. Changes in DPE1 gene expression also resulted in modifications in the thermal and pasting features of endosperm starch granules. In vitro analyses revealed that recombinant DPE1 can break down amylose into maltooligosaccharides in the presence of Glc, while it can transfer maltooligosyl groups from maltooligosaccharide to amylopectin or transfer maltooligosyl groups within and among amylopectin molecules in the absence of Glc. Moreover, a metabolic flow of maltooligosyl groups from amylose to amylopectin was clearly identifiable when comparing DPE1-overexpressing lines with DPE1-suppressed lines. These findings demonstrate that DPE1 participates substantially in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin

    Observation of Near-Inertial Internal Gravity Waves in the Southern South China Sea

    No full text
    Two sets of more than 850 days of mooring records and satellite altimeter data are used to explore the features and spatiotemporal evolution of near-inertial waves (NIWs) near Nansha Island in the southern South China Sea (SCS). The observed NIWs are dominated by clockwise (downward energy propagation) motions and show a clear blue shift with a distinct peak frequency of 1.09 f during two large NIW events. The near-inertial kinetic energy (NIKE) is primarily concentrated in the upper layer and radiated downward. The largest value of depth-integrated NIKE reaches 3.5 KJ/m2. Besides, the NIWs are dominated by the first three modes, which account for 80% of the total NIKE. Moreover, the depth-integrated NIKE exhibits an apparent seasonal variation, with the largest NIKE in winter, which is almost three times larger than that in other seasons. Every large NIKE event is attributed to the passage of storms and is dominated by mode-2 NIWs. The dominance of the mode-2 NIWs is likely caused by the interaction between NIWs and mesoscale eddies

    Increasing alpha-linolenic acid content in rice bran by embryo-specific expression of omega 3/Delta 15-desaturase gene

    No full text
    Rice bran, the byproduct of brown rice, with a million tons produced annually, is the major storage organ for lipids. Increasing the alpha-linolenic acid (ALA) content in rice bran by biotechnology strategies is beneficial for both human health and the oil industries. We introduced two omega 3/Delta 15 fatty acid desaturase genes cloned from rice and soybean into rice under the control of an embryo-specific promoter, REG. The ALA content (dry weight) in embryos and bran was increased up to 6.09 and 5.86 mg/g, respectively, in transgenic lines, which was 25.4- and 27.9-fold higher than the 0.24 and 0.21 mg/g in the nontransformant control. ALA accounted for 46.7 and 44.3 % of the total fatty acids in embryos and bran, respectively, of transgenic plants, which was comparable to that in linseed and perilla seeds. The trait of high ALA content was stably inherited. The enhanced ALA content was preferentially located at the sn-2 position in triacylglycerols, which are digestible and absorbable for humans. ALA-enriched rice bran may help alleviate human health problems caused by ALA deficiency, with the production of healthy bran oil for humans and feed for animals
    corecore