70 research outputs found

    Nitric oxide-induced lipophagic defects contribute to testosterone deficiency in rats with spinal cord injury

    Get PDF
    IntroductionMales with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive.Methods and resultsHerein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis.DiscussionIn summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI

    Effects of Hepatitis B Virus S Protein Exposure on Sperm Membrane Integrity and Functions

    Get PDF
    Background: Hepatitis B is a public health problem worldwide. Viral infection can affect a man’s fertility, but only scant information about the influence of hepatitis B virus (HBV) infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs) on human sperm membrane integrity and functions. Methods/Principal Findings: Reactive oxygen species (ROS), lipid peroxidation (LP), total antioxidant capacity (TAC) and phosphatidylserine (PS) externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and flow cytometric analyses were performed. (1) After 3 h incubation with 25 mg/ml of HBs, the average rates of ROS positive cells, annexin V–positive/propidium iodide (PI)-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA) in the sperm cells exposed to 50 mg/ml of HBs for 3 h was significantly higher than that in the control (P,0.05–0.01). (2) HBs increased the MDA levels and the numbers of ROS positive cells, annexin V–positive/PI-negative cells, caspases-3,-8,-9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3) HBs monoclonal antibody (MAb) and N-Acetylcysteine (NAC) reduced the number of ROS-positive sperm cells. (4) HBs decreased the TAC levels in sperm cells in a dose-dependent manner. Conclusion: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation o

    Effect of Paternal Age on Reproductive Outcomes of In Vitro Fertilization.

    No full text
    Although the adverse effects of maternal aging on reproductive outcomes have been investigated widely, there is no consensus on the impact of paternal age. Therefore, we investigated the effect of paternal age on reproductive outcomes in a retrospective analysis of 9,991 in vitro fertilization (IVF) cycles performed at the Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University (China) between January 2007 and October 2013. Samples were grouped according to maternal age [0.05). Chi-squared analysis revealed that there were no differences in implantation and pregnancy rates among the different paternal age groups when maternal age was 0.05). However, implantation and pregnancy rates decreased with paternal age in the 31-34 y maternal age group (P <0.05). Our study indicates that paternal age has no impact on fertilization rate, embryo quality at the cleavage stage and miscarriage rate. For the 30-34 y maternal age group, the implantation rate decreased with increased paternal age, with the pregnancy rate in this group being significantly higher in the paternal <30 y and 30-32 y age groups, compared with those in the 36-38 y and 39-41 y groups

    Effect of Paternal Age on Reproductive Outcomes of Intracytoplasmic Sperm Injection.

    No full text
    The impact of paternal age on reproduction, especially using assisted reproductive technologies, has not been well studied to date. To investigate the effect of paternal age on reproductive outcomes, here we performed a retrospective analysis of 2,627 intracytoplasmic sperm injection (ICSI) cycles performed at the Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University (China) between January 2007 and May 2015. Effect of paternal age on embryo quality [number of fertilized oocytes, 2 pronucleus zygotes (2PNs), viable embryos, and high-quality embryos] was analyzed by multiple linear regression. Relationships between paternal age and pregnancy outcomes were analyzed by binary logistic regression. After adjusting for female age, no association between paternal age and the following parameters of embryo quality was observed: number of fertilized oocytes (B = -0.032; 95% CI -0.069-0.005; P = 0.088), number of 2PNs (B = -0.005; 95% CI -0.044-0.034; P = 0.806), and number of viable embryos (B = -0.025; 95% CI -0.052-0.001; P = 0.062). However, paternal age negatively influenced the number of high-quality embryos (B = -0.020; 95% CI -0.040-0.000; P = 0.045). Moreover, paternal age had no effect on pregnancy outcomes (OR for a 5-year interval), including the rates of clinical pregnancy (OR 0.919; 95% CI 0.839-1.006; P = 0.067), ongoing pregnancy (OR 0.914; 95% CI 0.833-1.003; P = 0.058), early pregnancy loss (OR 1.019; 95% CI 0.823-1.263; P = 0.861), live births (OR 0.916; 95% CI 0.833-1.007; P = 0.070), and preterm births (OR 1.061; 95% CI 0.898-1.254; P = 0.485). Therefore, increased paternal age negatively influences the number of high-quality embryos, but has no effect on pregnancy outcomes in couples undergoing ICSI cycles. However, more studies including men aged over 60 years with a longer-term follow-up are needed

    Recycled Carbon Fiber-Supported Polyaniline/Manganese Dioxide Prepared via One-Step Electrodeposition for Flexible Supercapacitor Integrated Electrodes

    No full text
    The exploration of multifunctional electrode materials has been a hotspot for the development of high-performance supercapacitors. We have used carbon fiber plates recovered from construction waste to prepare high-quality flexible carbon fiber materials by pyrolysis of epoxy resin. The as-prepared recycled carbon fiber has a diameter of 8 &mu;m and is the perfect substrate material for flexible electrode materials. Furthermore, polyaniline and manganese dioxide are uniformly deposited on the recycled carbon fiber by one-step electrodeposition to form an active film. The recycled carbon fiber/polyaniline/MnO2 composite shows an excellent specific capacitance of 475.1 F&middot;g&minus;1 and capacitance retention of 86.1% after 5000 GCD cycles at 1 A&middot;g&minus;1 in 1 M Na2SO4 electrolyte. The composites optimized for electrodeposition time have more electroactive sites, faster ions and electron transfer, structural stability and higher conductivity, endowing the composites promising application prospect

    Fertilization rates in different age groups.

    No full text
    <p>In each group (maternal age <30 y, 30–34 y, 35–38 y), there were no significant differences in fertilization rate among different paternal age subgroups (<i>P</i>>0.05).</p

    Images of embryos.

    No full text
    <p>2PN on Day 1, 4-cell embryo on Day 2, 8-cell embryo on Day 3. PN = pronucleus.</p

    Cycle distribution in the different age groups.

    No full text
    <p>Note: The upper row in each group is the number (n); the lower row is the percentage (%).</p><p>Cycle distribution in the different age groups.</p

    Miscarriage rates in different age groups.

    No full text
    <p>In each group (maternal age <30 y, 30–34 y, 35–38 y), there were no significant differences in miscarriage rate among different paternal age subgroups (<i>P</i>>0.05).</p

    Pregnancy rates in different age groups.

    No full text
    <p>There were no significant differences in pregnancy rate among the different paternal age groups when the maternal age was <30 y and 35–38 (<i>P</i> >0.05). In the 30–34 y maternal age group, the pregnancy rates significantly decreased with increasing paternal age (<i>P</i> <0.05).</p
    • …
    corecore