814 research outputs found

    Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability

    Get PDF
    Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR) on growth rate and tolerance to food-deprivation in juvenile crucian carp (Carassius auratus) under varying levels of food availability. To address this issue, 19 high and 16 low SMR (individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation) for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food-deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e., food shortage)

    2-(2-Furylmethyl­ammonio)ethane­sulfonate methanol solvate

    Get PDF
    The organic mol­ecule of the title compound, C7H11NO4S·CH3OH, is a zwitterion and its furan ring displays positional disorder [occupancy 0.563 (5):0.437 (5)]. The crystal structure is extended into a three-dimensional supra­molecular architecture through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds with participation of the methanol solvent mol­ecules

    A novel vaccine candidate based on chimeric virus-like particle displaying multiple conserved epitope peptides induced neutralizing antibodies against EBV infection.

    Get PDF
    Epstein-Barr virus (EBV) is the causative pathogen for infectious mononucleosis and many kinds of malignancies including several lymphomas such as Hodgkin\u27s lymphoma, Burkitt\u27s lymphoma and NK/T cell lymphoma as well as carcinomas such as nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBV-GC). However, to date no available prophylactic vaccine was launched to the market for clinical use

    Cognitive behavioural therapy monotherapy for insomnia: A meta-analysis of randomized controlled trials

    Get PDF
    This was a meta-analysis of randomized controlled trials (RCTs) comparing the effects of cognitive behavioural therapy for insomnia (CBTI) as a monotherapy and active control treatments in persons with insomnia who have no major medical conditions or psychiatric comorbidities. PubMed, PsycINFO, EMBASE, Cochrane Library databases, WanFang and CNKI were systematically and independently searched. Standardized mean differences (SMDs) and risk ratio (RR) with their 95% confidence intervals (CIs) were calculated. Nine RCTs with 12 treatment arms comparing CBTI (n = 479) and active control (n = 510) groups were analyzed. Compared to the active control group, the CBTI group showed significantly less improvement in insomnia at post-CBTI assessment in terms of sleep efficiency (SMD: 0.32, 95% CI: 0.00 to 0.63), sleep latency (SMD: -0.33, 95% CI: -0.56 to -0.09), wake after sleep onset (SMD: -0.27, 95% CI: -0.52 to -0.01), the total scores of Pittsburgh Sleep Quality Index (SMD: -0.52, 95% CI: -0.86 to -0.19), the Insomnia Symptom Index (SMD: -0.68, 95% CI: -1.01 to -0.36), the Dysfunctional Attitudes and Beliefs About Sleep Scale (SMD: -0.76, 95% CI: -1.25 to -0.27), and the Athens Insomnia Scale (SMD: -0.66, 95% CI: -1.07 to -0.24). In this meta-analysis, CBTI monotherapy showed no ad- vantage in improving insomnia compared with other standard treatments

    Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways

    Get PDF
    Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke

    Effects of tumor metabolic microenvironment on regulatory T cells

    Get PDF
    Recent studies have shown that on one hand, tumors need to obtain a sufficient energy supply, and on the other hand they must evade the body’s immune surveillance. Because of their metabolic reprogramming characteristics, tumors can modify the physicochemical properties of the microenvironment, which in turn affects the biological characteristics of the cells infiltrating them. Regulatory T cells (Tregs) are a subset of T cells that regulate immune responses in the body. They exist in large quantities in the tumor microenvironment and exert immunosuppressive effects. The main effect of tumor microenvironment on Tregs is to promote their differentiation, proliferation, secretion of immunosuppressive factors, and chemotactic recruitment to play a role in immunosuppression in tumor tissues. This review focuses on cell metabolism reprogramming and the most significant features of the tumor microenvironment relative to the functional effects on Tregs, highlighting our understanding of the mechanisms of tumor immune evasion and providing new directions for tumor immunotherapy

    A modular assembly of spinal cord-like tissue allows targeted tissue repair in the transected spinal cord

    Get PDF
    Tissue engineering–based neural construction holds promise in providing organoids with defined differentiation and therapeutic potentials. Here, a bioengineered transplantable spinal cord–like tissue (SCLT) is assembled in vitro by simulating the white matter and gray matter composition of the spinal cord using neural stem cell–based tissue engineering technique. Whether the organoid would execute targeted repair in injured spinal cord is evaluated. The integrated SCLT, assembled by white matter–like tissue (WMLT) module and gray matter–like tissue (GMLT) module, shares architectural, phenotypic, and functional similarities to the adult rat spinal cord. Organotypic coculturing with the dorsal root ganglion or muscle cells shows that the SCLT embraces spinal cord organogenesis potentials to establish connections with the targets, respectively. Transplantation of the SCLT into the transected spinal cord results in a significant motor function recovery of the paralyzed hind limbs in rats. Additionally, targeted spinal cord tissue repair is achieved by the modular design of SCLT, as evidenced by an increased remyelination in the WMLT area and an enlarged innervation in the GMLT area. More importantly, the pro‐regeneration milieu facilitates the formation of a neuronal relay by the donor neurons, allowing the conduction of descending and ascending neural inputs

    Diatom-based water-table reconstruction in Sphagnum peatlands of northeastern China

    Get PDF
    Peatlands are important ecosystems for biodiversity conservation, global carbon cycling and water storage. Hydrological changes due to climate variability have accelerated the degradation of global and regional ecosystem services of peatlands. Diatoms are important producers and bioindicators in wetlands, but comprehensive diatom-based inference models for palaeoenvironmental reconstruction in peatlands are scarce. To explore the use of diatoms for investigating peatland hydrological change, this study established a training set consisting of diatom composition and twelve environmental factors from 105 surface samples collected from five Sphagnum peatlands in northeastern China. Diatom communities were dominated by Eunotia species. Ordination analyses showed that depth to the water table (DWT) was the most important factor influencing diatom distribution, independently accounting for 4.99% of total variance in diatom data. Accordingly, a diatom-based DWT transfer function was developed and thoroughly tested. The results revealed that the best-performing model was based on weighted averaging with inverse deshrinking (R2 = 0.66, RMSEP = 8.8 cm with leave-one-out cross validation). Quantitative reconstruction of DWT on a short peat core collected from the Aershan Peatland (Inner Mongolia) recorded climate-mediated hydrological changes over the last two centuries. This study presents the first diatom-water table transfer function in Sphagnum peatlands, and highlights the potential of diatoms as a powerful tool to assess the magnitude of past hydrological changes in peatlands of northeastern China, as well as similar peaty environments worldwide
    corecore