2,457 research outputs found

    Electrical Control of Magnetization in Charge-ordered Multiferroic LuFe2O4

    Full text link
    LuFe2O4 exhibits multiferroicity due to charge order on a frustrated triangular lattice. We find that the magnetization of LuFe2O4 in the multiferroic state can be electrically controlled by applying voltage pulses. Depending on with or without magnetic fields, the magnetization can be electrically switched up or down. We have excluded thermal heating effect and attributed this electrical control of magnetization to an intrinsic magnetoelectric coupling in response to the electrical breakdown of charge ordering. Our findings open up a new route toward electrical control of magnetization.Comment: 14 pages, 5 figure

    Separable Pathway Effects of Semi-Competing Risks via Multi-State Models

    Full text link
    Semi-competing risks refer to the phenomenon where a primary outcome event (such as mortality) can truncate an intermediate event (such as relapse of a disease), but not vice versa. Under the multi-state model, the primary event is decomposed to a direct outcome event and an indirect outcome event through intermediate events. Within this framework, we show that the total treatment effect on the cumulative incidence of the primary event can be decomposed into three separable pathway effects, corresponding to treatment effects on population-level transition rates between states. We next propose estimators for the counterfactual cumulative incidences of the primary event under hypothetical treatments by generalized Nelson-Aalen estimators with inverse probability weighting, and then derive the consistency and asymptotic normality of these estimators. Finally, we propose hypothesis testing procedures on these separable pathway effects based on logrank statistics. We have conducted extensive simulation studies to demonstrate the validity and superior performance of our new method compared with existing methods. As an illustration of its potential usefulness, the proposed method is applied to compare effects of different allogeneic stem cell transplantation types on overall survival after transplantation

    Visualization of all two-qubit states via partial-transpose-moments

    Full text link
    Efficiently detecting entanglement based on measurable quantities is a basic problem for quantum information processing. Recently, the measurable quantities called partial-transpose (PT)-moments have been proposed to detect and characterize entanglement. In the recently published paper [L. Zhang \emph{et al.}, \href{https://doi.org/10.1002/andp.202200289}{Ann. Phys.(Berlin) \textbf{534}, 2200289 (2022)}], we have already identified the 2-dimensional (2D) region, comprised of the second and third PT-moments, corresponding to two-qubit entangled states, and described the whole region for all two-qubit states. In the present paper, we visualize the 3D region corresponding to all two-qubit states by further involving the fourth PT-moment (the last one for two-qubit states). The characterization of this 3D region can finally be achieved by optimizing some polynomials. Furthermore, we identify the dividing surface which separates the two parts of the whole 3D region corresponding to entangled and separable states respectively. Due to the measurability of PT-moments, we obtain a complete and operational criterion for the detection of two-qubit entanglement.Comment: 29 pages, LaTeX, 8 figures, 2 table

    N-(1-Naphth­yl)acetoacetamide

    Get PDF
    The title compound, C14H13NO2, exists in the keto form. An N—H⋯O hydrogen bond helps to establish the packing

    {2,2′-[4-Methyl-4-aza­heptane-1,7-diylbis(nitrilo­methyl­idyne)]diphenolato}zinc(II)

    Get PDF
    In the title compound, [Zn(C21H25N3O2)], the ZnII atom is five-coordinate from three N donor atoms and two O donor atoms of the dianion ligand in a distorted trigonal–bipyramidal arrangement. Three methyl­ene groups of the ligand are disordered over two orientations in a 0.555 (6):0.445 (6) ratio
    corecore