834 research outputs found

    Using MicroPET Imaging in Quantitative Verification of Acupuncture Effect in Ischemia Stroke Treatment

    Get PDF
    While acupuncture has survived several thousand years’ evolution of medical practice, its function still remains as a myth from the view point of modern medicine. Our goal in this paper is to quantitatively understand the function of acupuncture in ischemia stroke treatment. We carried out a comparative study using the Sprague Dawley rat animal model. We induced the focal cerebral ischemia in the rats using the middle cerebral artery occlusion (MCAO) procedure. For each rat from the real acupuncture group (n = 40), sham acupoint treatment group (n = 54), and blank control group (n = 16), we acquired 3-D FDG-microPET images at baseline, after MCAO, and after treatment (i.e., real acupuncture, sham acupoint treatment, or resting according to the group assignment), respectively. After verifying that the injured area is in the right hemisphere of the cerebral cortex in the brain by using magnetic resonance imaging(MRI) and triphenyl tetrazolium cchloride (TTC)-staining, we directly compared the glucose metabolism in the right hemisphere of each rat. We carried out t-test and permutation test on the image data. Both tests demonstrated that acupuncture had a more positive effect than non-acupoint stimulus and blank control (P < 0.025) in increasing the glucose metabolic level in the stroke-injured area in the brain, while there was no statistically significant difference between non-acupoint stimulus and blank control (P>0.15). The immediate positive effect of acupuncture over sham acupoint treatment and blank control is verified using our experiments. The long-term benefit of acupuncture needs to be further studied

    A new mapping method for quantitative trait loci of silkworm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Silkworm is the basis of sericultural industry and the model organism in insect genetics study. Mapping quantitative trait loci (QTLs) underlying economically important traits of silkworm is of high significance for promoting the silkworm molecular breeding and advancing our knowledge on genetic architecture of the Lepidoptera. Yet, the currently used mapping methods are not well suitable for silkworm, because of ignoring the recombination difference in meiosis between two sexes.</p> <p>Results</p> <p>A mixed linear model including QTL main effects, epistatic effects, and QTL × sex interaction effects was proposed for mapping QTLs in an F<sub>2 </sub>population of silkworm. The number and positions of QTLs were determined by <it>F</it>-test and model selection. The Markov chain Monte Carlo (MCMC) algorithm was employed to estimate and test genetic effects of QTLs and QTL × sex interaction effects. The effectiveness of the model and statistical method was validated by a series of simulations. The results indicate that when markers are distributed sparsely on chromosomes, our method will substantially improve estimation accuracy as compared to the normal chiasmate F<sub>2 </sub>model. We also found that a sample size of hundreds was sufficiently large to unbiasedly estimate all the four types of epistases (i.e., additive-additive, additive-dominance, dominance-additive, and dominance-dominance) when the paired QTLs reside on different chromosomes in silkworm.</p> <p>Conclusion</p> <p>The proposed method could accurately estimate not only the additive, dominance and digenic epistatic effects but also their interaction effects with sex, correcting the potential bias and precision loss in the current QTL mapping practice of silkworm and thus representing an important addition to the arsenal of QTL mapping tools.</p

    Axial length shortening in myopic children with Stickler syndrome after repeated low-level red-light therapy

    Get PDF
    AIM: To report the myopia-controlling effect of repeated low-level red-light (RLRL) therapy in patients with Stickler syndrome (STL), an inherited collagenic disease typically presenting with early onset myopia. METHODS: Three STL children, aged 3, 7, and 11y, received RLRL therapy throughout the follow-up period of 17, 3, and 6mo, respectively after exclusion of fundus anomalies. Data on best-corrected visual acuity (BCVA), intraocular pressure, cycloplegic subjective refraction, ocular biometrics, scanning laser ophthalmoscope, optical coherence tomography, genetic testing, systemic disease history, and family history were recorded. RESULTS: At the initiation of the RLRL therapy, the spherical equivalent (SE) of 6 eyes from 3 patients ranged from -3.75 to -20.38 D, axial length (AL) were from 23.88 to 30.68 mm, and BCVA were from 0.4 to 1.0 (decimal notation). Myopia progression of all six eyes slowed down after RLRL therapy. AL in five out of the six eyes shortened -0.07 to -0.63 mm. No side effects were observed. CONCLUSION: Three cases of STL whose progression of myopic shift and AL elongation are successfully reduced and even reversed after RLRL therapy

    Cathepsin G activity lowers plasma LDL and reduces atherosclerosis

    Get PDF
    AbstractCathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr–/–) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3months. When mice consume this diet for 6months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r=–0.535, P<0.0001) and LDL cholesterol (r=–0.559, P<0.0001), but not with HDL cholesterol (P=0.901) or triglycerides (P=0.186). Such inverse correlations with total cholesterol (r=–0.504, P<0.0001) and LDL cholesterol (r=–0.502, P<0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides

    ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Get PDF
    SummaryDegeneration of basal forebrain cholinergic neurons (BFCNs) is associated with cognitive impairments of Alzheimer’s disease (AD), implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs) are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD

    Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film

    Get PDF
    Antimony selenide (Sb2Se3) is regarded as one of the key alternative absorber materials for conventional thin film solar cells due to its excellent optical and electrical properties. Here, we proposed a Sb2Se3 thin film solar cell fabricated using a two-step process magnetron sputtering followed by a post-selenization treatment, which enabled us to optimize the best quality of both the Sb2Se3 thin film and the Sb2Se3/CdS heterojunction interface. By tuning the selenization parameters, a Sb2Se3 thin film solar cell with high efficiency of 6.06% was achieved, the highest reported power conversion efficiency of sputtered Sb2Se3 planar heterojunction solar cells. Moreover, our device presented an outstanding open circuit voltage (VOC) of 494 mV which is superior to those reported Sb2Se3 solar cells. State and density of defects showed that proper selenization temperature could effectively passivate deep defects for the films and thus improve the device performance

    Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration

    Get PDF
    ObjectivesThis study tested whether interleukin (IL)-17A is involved in the pathogenesis of mouse myocardial ischemia/reperfusion (I/R) injury and investigated the mechanisms.BackgroundInflammatory processes play a major role in myocardial I/R injury. We recently identified IL-17A as an important cytokine in inflammatory cardiovascular diseases such as atherosclerosis and viral myocarditis. However, its role in myocardial I/R injury remains unknown.MethodsThe involvement of IL-17A was assessed in functional assays in mouse myocardial I/R injury by neutralization/repletion or genetic deficiency of IL-17A, and its mechanism on cardiomyocyte apoptosis and neutrophil infiltration were further studied in vivo and in vitro.ResultsInterleukin-17A was elevated after murine left coronary artery ligation and reperfusion. Intracellular cytokine staining revealed that γδT lymphocytes but not CD4+ helper T cells were a major source of IL-17A. Anti–IL-17A monoclonal antibody treatment or IL-17A knockout markedly ameliorated I/R injury, as demonstrated by reduced infarct size, reduced cardiac troponin T levels, and improved cardiac function. This improvement was associated with a reduction in cardiomyocyte apoptosis and neutrophil infiltration. In contrast, repletion of exogenous IL-17A induced the opposite effect. In vitro study showed that IL-17A mediated cardiomyocyte apoptosis through regulating the Bax/Bcl-2 ratio, induced CXC chemokine-mediated neutrophil migration and promoted neutrophil-endothelial cell adherence through induction of endothelial cell E-selectin and inter-cellular adhesion molecule-1 expression.ConclusionsIL-17A mainly produced by γδT cells plays a pathogenic role in myocardial I/R injury by inducing cardiomyocyte apoptosis and neutrophil infiltration
    corecore