9,083 research outputs found

    Dust-to-gas ratio, XCOX_{\rm CO} factor and CO-dark gas in the Galactic anticentre: an observational study

    Full text link
    We investigate the correlation between extinction and H~{\sc i} and CO emission at intermediate and high Galactic latitudes (|b|>10\degr) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6,000\,deg2^2 at a spatial angular resolution of 6\,arcmin. In the current work, the map is combined with data from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR=AV/N(H)DGR=A_V/N({\rm H}) and CO-to-H2\rm H_2 conversion factor XCO=N(H2)/WCOX_{\rm CO}=N({\rm H_2})/W_{\rm CO} for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR=(4.15±0.01)×10−22DGR=(4.15\pm0.01) \times 10^{-22}\,mag cm2\rm mag\,cm^{2} and XCO=(1.72±0.03)×1020X_{\rm CO}=(1.72 \pm 0.03) \times 10^{20}\,cm−2 (K km s−1)−1\rm cm^{-2}\,(K\,km\,s^{-1})^{-1}. We have also investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the VV-band extinction: N(DG)≃2.2×1021(AV−AVc) cm−2N({\rm DG}) \simeq 2.2 \times 10^{21} (A_V - A^{c}_{V})\,\rm cm^{-2}. The mass fraction of DG is found to be fDG∼0.55f_{\rm DG}\sim 0.55 toward the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2\rm H_2 cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Thermodynamic properties of tetrameric bond-alternating spin chains

    Full text link
    Thermodynamic properties of a tetrameric bond-alternating Heisenberg spin chain with ferromagnetic-ferromagnetic-antiferromagnetic-antiferromagnetic exchange interactions are studied using the transfer-matrix renormalization group and compared to experimental measurements. The temperature dependence of the uniform susceptibility exhibits typical ferrimagnetic features. Both the uniform and staggered magnetic susceptibilities diverge in the limit T→0T\to 0, indicating that the ground state has both ferromagnetic and antiferromagnetic long-range orders. A double-peak structure appears in the temperature dependence of the specific heat. Our numerical calculation gives a good account for the temperature and field dependence of the susceptibility, the magnetization, and the specific heat for Cu(3-Clpy)2_{2}(N3_{3})2_{2} (3-Clpy=3-Chloroyridine).Comment: 8 pages, 12 figures; Replaced with final version accepted in Phys. Rev.

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde

    Ground state properties of one-dimensional Bose-Fermi mixtures

    Full text link
    Bose-Fermi mixtures in one dimension are studied in detail on the basis of an exact solution. Corresponding to three possible choices of the referecce state in the quantum inverse scattering method, three sets of Bethe-ansatz equations are derived explicitly. The features of the ground state and low-lying excitations are investigated. The ground state phase diagram caused by the external field and chemical potential is obtained
    • …
    corecore