8,576 research outputs found

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde

    Thermodynamic properties of tetrameric bond-alternating spin chains

    Full text link
    Thermodynamic properties of a tetrameric bond-alternating Heisenberg spin chain with ferromagnetic-ferromagnetic-antiferromagnetic-antiferromagnetic exchange interactions are studied using the transfer-matrix renormalization group and compared to experimental measurements. The temperature dependence of the uniform susceptibility exhibits typical ferrimagnetic features. Both the uniform and staggered magnetic susceptibilities diverge in the limit T→0T\to 0, indicating that the ground state has both ferromagnetic and antiferromagnetic long-range orders. A double-peak structure appears in the temperature dependence of the specific heat. Our numerical calculation gives a good account for the temperature and field dependence of the susceptibility, the magnetization, and the specific heat for Cu(3-Clpy)2_{2}(N3_{3})2_{2} (3-Clpy=3-Chloroyridine).Comment: 8 pages, 12 figures; Replaced with final version accepted in Phys. Rev.

    Evidence of s-wave pairing symmetry in layered superconductor Li0.68_{0.68}NbO2_2 from the specific heat measurement

    Full text link
    A high quality superconducting Li0.68_{0.68}NbO2_2 polycrystalline sample was synthesized by deintercalation of Li ions from Li0.93_{0.93}NbO2_2. The field dependent resistivity and specific heat were measured down to 0.5 K. The upper critical field Hc2(T)H_{c2} (T) is deduced from the resistivity data and Hc2(0)H_{c2}(0) is estimated to be ∼2.98\sim 2.98 T. A notable specific heat jump is observed at the superconducting transition temperature Tc∼5.0T_c \sim 5.0 K at zero field. Below TcT_c, the electronic specific heat shows a thermal activated behavior and agrees well with the theoretical result of the BCS s-wave superconductors. It indicates that the superconducting pairing in Li0.68_{0.68}NbO2_2 has s-wave symmetry.Comment: 4 pages, 5 figure
    • …
    corecore