75 research outputs found

    Graphene Based Waveguides

    Get PDF
    Graphene, which is well known as a one-atom thick carbon allotrope, has drawn lots of attention since its first announcement due to remarkable performance in mechanical, electrical, magnetic, thermal, and optical areas. In particular, unique properties of graphene such as low net absorption in broadband optical band, notably high nonlinear optical effects, and gate-variable optical conductivity make it an excellent candidate for high speed, high performance, and broadband electronic and photonics devices. Embedding graphene into optical devices longitudinally would enhance the light-graphene interaction, which shows great potential in photonic components. Since the carrier density of graphene could be tuned by external gate voltage, chemical doping, light excitation, graphene-based waveguide modulator could be designed to have high flexibility in controlling the absorption and modulation depth. Furthermore, graphene-based waveguides could take advantages in detection, sensing, polarizer, and so on

    Three dimensional photonic Dirac points in metamaterials

    Get PDF
    Topological semimetals, representing a new topological phase that lacks a full bandgap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent, metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin polarized Fermi arc like surface states is observed at the interface between air and the Dirac metamaterials. These surface states show linear k-space dispersion relation, resulting in nearly diffraction-less propagation. Furthermore, eigen reflection fields show the decomposition from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex/vector beams in classic photonics. The theoretical proposal of photonic Dirac point lays foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.Comment: 15 pages, 5 figure

    Phenomenological modeling of Geometric Metasurfaces

    Get PDF
    Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.Comment: 16 pages, 8 figure

    Recovering lossless propagation of polaritons with synthesized complex frequency excitation

    Full text link
    Surface plasmon polaritons and phonon polaritons offer a means of surpassing the diffraction limit of conventional optics and facilitate efficient energy storage, local field enhancement, high sensitivities, benefitting from their subwavelength confinement of light. Unfortunately, losses severely limit the propagation decay length, thus restricting the practical use of polaritons. While optimizing the fabrication technique can help circumvent the scattering loss of imperfect structures, the intrinsic absorption channel leading to heat production cannot be eliminated. Here, we utilize synthetic optical excitation of complex frequency with virtual gain, synthesized by combining the measurements taken at multiple real frequencies, to restore the lossless propagations of phonon polaritons with significantly reduced intrinsic losses. The concept of synthetic complex frequency excitation represents a viable solution to compensate for loss and would benefit applications including photonic circuits, waveguiding and plasmonic/phononic structured illumination microscopy.Comment: 20 pages, 4 figure
    • …
    corecore