
 
 

Manipulation of vector beam polarization with
geometric metasurfaces
Guo, Qinghua; Schlickriede, Christian; Wang, Dongyang; Liu, Hongchao; Xiang, Yuanjiang;
Zentgraf, Thomas; Zhang, Shuang
DOI:
10.1364/OE.25.014300

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Guo, Q, Schlickriede, C, Wang, D, Liu, H, Xiang, Y, Zentgraf, T & Zhang, S 2017, 'Manipulation of vector beam
polarization with geometric metasurfaces', Optics Express, vol. 25, no. 13, pp. 14300-14307.
https://doi.org/10.1364/OE.25.014300

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and
distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are
prohibited.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1364/OE.25.014300
https://research.birmingham.ac.uk/portal/en/publications/manipulation-of-vector-beam-polarization-with-geometric-metasurfaces(170d3155-2c4d-44e0-bb4a-22290ad0dbab).html


Manipulation of vector beam polarization with 
geometric metasurfaces 

Qinghua Guo,1,2,5 Christian Schlickriede,3,5 Dongyang Wang,2,4,5 
Hongchao Liu,2 Yuanjiang Xiang,1,6 Thomas Zentgraf,3,7 and 
Shuang Zhang2,* 
1SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory 
of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of 
Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 
2School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK 
3Department of Physics, University of Paderborn, Warburger Straße 100, Paderborn D-33098, 
Germany 
4Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, 
Tianjin University, Tianjin 300072, China 
5These authors contributed equally to this work 
6xiangyuanjiang@126.com 
7thomas.zentgraf@uni-paderborn.de 
*s.zhang@bham.ac.uk 

Abstract: Describing a class of beams with space-variant polarization, vector beams find 
many applications in both classical and quantum optics. However, simultaneous manipulation 
of its space-dependent polarization states is still a challenge with a single optical element. 
Here we demonstrate polarization modulation of a vector field by employing a plasmonic 
metasurface exhibiting strong and controllable optical activity. By changing the lateral phase 
shift between two reflective metasurface supercells, the rotation angle of a linear polarized 
light can be continuously tuned from zero to π with a high efficiency. As the optical activity 
of our metasurface devices only depends on geometrical phase, the metasurfaces can 
simultaneously modulate the rotation angle of a vector beam regardless of its space-variant 
polarization distribution. Our work provides a high efficient method in manipulating the 
polarization state of vector beams, especially with metasurface in a compact space, which 
presents great potential in research fields involving vector beams. 
©2017 Optical Society of America 

OCIS codes: (160.3918) Metamaterials; (050.6624) Subwavelength structures. 
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1. Introduction 

The capability of manipulating the local polarization states of light is of vital importance in 
both fundamental studies and applications. Vector beams, which have a space-variant 
polarization in the transverse plane, have attracted much research attention in recent years, 
due to their intriguing and wide applications, including optical trapping [1,2], optical 
microscopy [3–6], optical micro-fabrication [7] and quantum information processing [8,9]. It 
is very important to realize the manipulation of vector beams polarization, especially in 
integrated systems. However, by utilizing combined optical elements [10,11], conventional 
methods to convert the polarization states of a vector beam usually suffer from complex and 
bulky configurations, which is not compatible with the primary trend of integration and 
miniaturization in photonics. 

In recent years, optical metasurfaces have gained increasing attention due to their 
remarkable abilities in light manipulation, versatility, ease of on-chip fabrication, and 
integration owing to their planar profiles [12–15]. Many exotic phenomena and useful flat 
optical devices have been demonstrated with metasurfaces such as Photonic Spin Hall Effect, 
cloaking, sensors, and control of polarization states [16–25]. In particular, it has been shown 
that with proper metasurface design the polarization angle of linear polarized light can be 
rotated in the same way as the optical activity (OA) effect [26–29]. However, most of the OA 
effects from plasmonic metasurface devices experience a strong dispersion due to resonant 
characteristics of the plasmon modes. In addition, most of the designs depend on the 
polarization of input light. All these present challenge in the polarization manipulation of a 
vector beam. 

In contrast, geometric metasurfaces that can introduce robust and dispersionless phase 
jumps along the light path to manipulate phase, amplitude, and polarization of light over 
subwavelength propagation distances have shown great advantages in realizing integrated 
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optical devices, such as anomalous reflection/refraction [30–35], directional couplers for 
surface plasmon polaritons [36–38], planar focusing lenses [39–42], high-resolution optical 
holograms [43–48] and beam structuring [49,50]. In geometric metasurfaces, giant OA with 
non-chiral plasmonic nano-antennas based on the phase shift between left and right circularly 
polarized components can overcome the strong dependency of incident polarization direction 
and makes the tunable chiral effects in integrated optics possible [51]. In this work, we 
employ a reflective metasurface to arbitrarily manipulate the polarization state of vector 
beams. The vector fields rotation angle could be easily modulated by introducing different 
phase shift between two supercells of the metasurface. Four different samples are designed 
and fabricated to show the modulation ability of the metasurface with superior robustness and 
efficiency. 

2. Theory 

 

Fig. 1. Optical activity obtained by metasurfaces. (a) For linearly polarized light reflected by 
the metasurface A/B, right/left- and left/right-handed circularly polarized components are 
diffracted into the ( ± 1) first diffraction orders, respectively. (b) Each unit A or B contains 
eight gold nanorods with variable rotation angle from zero to π or from -π to zero. The 
reflected linear polarization direction in the first diffraction orders can be realized by 
introducing a geometric phase shiftΔbetween the units A and B. (c) Scanning electron 
microscopy images of the four metasurface samples s1, s2, s3 and s4, which are fabricated by 
electron beam lithography technique (scale bar: 200 nm). The geometric phase shift between A 
and B is zero for s1, π/4 for s2, π/2 for s3 and 3π/4 for s4. 

The simplest form of geometric metasurface consists of an array of plasmonic antennas with a 
linear gradient in their orientation angle along a certain direction. For a circularly polarized 
beam incident onto the metasurface, the scattering of light with opposite spins acquires a spin-
dependent geometric phase of twice the orientation angle of the antenna. As such, the gradient 
in orientation angle translates into a gradient in phase, leading to diffraction of light into a 
spin-dependent diffraction order. 

Here we closely follow the metasurface design in Reference [51]. We design and fabricate 
reflective metasurfaces that simultaneously generate two spin eigenstates with pre-designed 
phase difference between them to modulate the vector beams with high efficiency. As shown 
in Fig. 1(a), the plasmonic metasurface for realizing OA consists of periodic A and B sub-
units arranged alternately along y direction. In sub-units A and B, each unit has total eight 
gold nanorods with a π/8 rotated angle difference in two neighboring nanorods along x-axis. 
And the rotation directions of eight nanorods in A and B are opposite to each other. If linearly 
polarized light with polarization direction parallel to the x-y plane is normally incident onto 
the metasurface composed with only unit A, the anomalous right circularly polarized light 
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(RCP) and left circularly polarized light (LCP) are diffracted to ± 1st orders [32,52]. 
Inversely, RCP and LCP polarized light diffract along the ± 1st orders after passing through a 
metasurface composed with only unit B. Hence in order to restore a linear polarization in the 
diffracted orders, both unit A and B are employed to construct the metasurface. At both 
diffraction orders ( ± 1st), linearly polarized light is obtained with the same polarization if the 
geometric distribution of sub-unit A and B is aligned. 

As shown in Fig. 1(b), if we introduce a spatial shift δ along x-axis direction between sub-
unit A and B, a corresponding phase shift of 2 2 / pπδΔ =  is added between the LCP and 

RCP diffracted in the same direction, where p is the length of the sub-unit. Let the 
polarization of incident light has a azimuth angle of 0α  relative to x-axis, its polarization 

direction can be defined by Jones matrix: 0 0
1 12 2

4 4
i ie e

i i
α α−   

+   −   
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1

i

 
 
 

and 
1

i

 
 − 

are 

the two bases for LCP and RCP, respectively. After introducing a phase shift Δ between the A 
and B metasurface sub-units, the electric fields polarization of diffracted light at ± 1 orders 
could be then described by the following equations: 
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 (2) 

From the equations, we can see that the phase shift between the LCP and RCP leads to a 
0180 / π⋅ Δ  polarization rotation of the output. So the lateral phase shift Δ between the two 

metasurface units determines the rotation angle of linear polarized light at the two diffraction 
orders. More interestingly, when the polarization direction of light is continuously rotated in 
the x-y plane, the net rotation angle is kept the same, which means our design has no 
dispersion and is not limited by initial polarization directions, thus providing a potential way 
to modulate the vector beams in integrated system. 

3. Experimental results 

The metasurface with sub-units A and B consists of three layers with a metal-dielectric-metal 
sandwich configuration. The bottom gold metal layer and middle MgF2 dielectric layer have 
thicknesses of 130 nm and 90 nm, respectively. The top layer consists of gold nanorods with 
length L = 200 nm, width W = 80 nm and height H = 30 nm. The cells are arranged with 
periods Px = 300 nm and Py = 300 nm, as labeled in Fig. 1(b). The dimension of a metasurface 
sample is 300 × 300 μm2. Figure 1(c) shows the SEM images of four metasurface samples s1, 
s2, s3 and s4, in which the lateral phase shift Δ between A and B units are zero, π/4, π/2 and 
3π/4, respectively. The OA effects from the composite metasurfaces are measured by using a 
supercontinuum laser source (Fianium SP 400C-PP). After passing through a linear polarizer, 
the linearly polarized light is focused onto the plasmonic metasurface by a convex lens with 
focal length of 75 mm. The first order diffraction at angle of 0arcsin( / )pλ± from the gold 

metasurface is analyzed by the second linear polarizer and an InGaAs Infrared power meter. 
The working wavelength in this work is tuned fromλ0 = 600 nm to 1100 nm at a step of 50 
nm. 

Figure 2(a) shows the polarization rotation of the reflected beam by four metasurface 
devices versus the wavelength of incident light. The polarization angle of the incident light is 
set along x-axis. For the two diffraction orders, the rotation angles of linear polarization from 
all four samples show almost no dispersion in the measuring wavelength range (600 nm to 
1100 nm). The reflected rotation angle only depends on the lateral spatial shift between the A 
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and B units, which agrees with the previous theoretical analysis. It is worthy to mention that 
the polarization direction at both of ± 1 orders rotates along clockwise direction. This 
unintuitive result is actually reasonable as the metasurface units break the mirror symmetry 
and thus the rotation angle at the two first orders do not need to be opposite. Because the 
polarization rotation angle is determined by the phase delay between LCP and RCP 
eigenstates, the phase shift is only caused by the geometric dislocation of the two subunits. It 
is expected that the net rotation angle Δis a constant for a variable polarization angle of the 
incident light. This is also experimentally verified in Fig. 2(b), which shows the linear relation 
between input and output polarization angles. The net rotation angle remains 0, 45, 90, 135 
degree for the four samples, while the input polarization angle in the x-y plane is continuously 
rotated. This independence to the initial polarization angle is the key to realize the vector 
beam modulator, which is difficult for most plasmonic and metamaterial devices that have 
strong plasmon resonances for particular polarization states and thus OA effect in those 
devices are usually sensitive to the direction of input polarization. 

 

Fig. 2. Experimental results of the optical activity effect. (a) Dispersionless polarization 
rotation angles for the four metasurface devices at the + 1st diffraction orders. (b) Linear 
relationship between initial polarization angle and that of the + 1st order diffraction from the 
metasurfaces. 

In order to verify the manipulation of the polarization state of the vector beams with the 
metasurfaces, we use a vector beam with m = 1 as the incident light [53]. The polarization 
distribution of the vector beam is shown in Fig. 3(a), which is verified by the fan-shaped 
intensity pattern after passing through an analyzer with direction indicated by the double-
headed arrow in Fig. 3(f). The vector beam is then incident onto the four metasurface samples 
and the corresponding intensity distributions of the reflected fields are measured. The 
intensity distributions show no difference after being reflected by the four samples as shown 
in Figs. 3(b)-3(e), which exhibit the same donut shape. In order to observe the rotation of 
polarization, we measure the intensity distribution of the reflected beams after the same 
analyzer whose direction is indicated by the double-headed arrow in Fig. 3(f). Figures 3(g)-
3(j) show the fan-shaped pattern with different direction corresponding to four different 
samples, which clearly verify that the vector beams have the field vector distribution as 
indicated by arrows in Figs. 3(b)-3(e) after reflected by the metasurfaces. We therefore 
successfully realize the vector beam polarization rotation with a single metasurface. 
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Fig. 3. Experimental results of the vector beam modulation. (a) The intensity distributions of a 
radially polarized which incident on the samples, with the white arrows representing the 
polarization distribution of the beam pattern. (b-e) Intensity and field vector distribution of the 
vector beam reflected by sample 1, 2, 3 and 4 respectively, without analyzer. (f-j) When an 
analyzer is used, the fan-like extinction pattern appears in intensity distribution, owing to the 
cylindrical symmetry polarization distribution in the beam cross section, which shows the 
polarization distribution of the vector beams. 

We further determine the conversion efficiency of our reflected metasurfaces. Figure 4 
shows the conversion efficiency of samples s2 and s3 with incident wavelength ranging from 
700 to 1000 nm. Because our metasurface has two subunits which are arranged in an 
alternating order, the efficiency is not as high as the case in reference [47], where single 
function nanorods are empolyed. Nevertheless, the efficiency of our reflective metasurface is 
measured to be 27% for each diffraction order, which is much higher than the transmissive 
type metasurfaces [51] and may be sufficient for most practical applications. 

 

Fig. 4. Experimentally obtained optical vector beam conversion efficiency of the first 
diffracted order corresponding to sample s2 and s3 with different incident wavelength. 

4. Conclusions 

In conclusion, we demonstrate a dispersionless, high-efficiency and broadband vector beam 
modulator by using ultrathin reflective metasurfaces consisting of specific arrangement of 
plasmonic nanorods. The rotation angle of each linear polarization over the transverse profile 
of the vector beam can be tuned simultaneously from zero to π by introducing a lateral shift 
between two metasurface sub-units. The stability and high conversion efficiency (up to 27% 
for each diffraction order) of our reflective metasurface shows a great potential for 
applications involving vector beams, such as microscopy imaging, optical trapping and 
quantum communications. 
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