5 research outputs found

    Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae)

    Get PDF
    Background The genus Triplostegia contains two recognized species, T. glandulifera and T. grandifora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. Results Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandifora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentifed as T. glandulifera, but difers in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96Ma, and within it T. glandulifera diverged 7.94Ma. Triplostegia grandifora and sp. A diverged 1.05Ma, perhaps in response to Quaternary climate fuctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. Conclusions Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identifed that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegi

    Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

    Get PDF
    We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study

    Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

    Get PDF
    We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study

    Comprehending Cornales: phylogenetic reconstruction of the order using the Angiosperms353 probe set

    No full text
    10 Pág. Centro de Biotecnología y Genómica de Plantas (CBGP)Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales.Funding was provided by the Dogwood Genome Project (NSF IOS-1444567) and benefited from NSF DEB-1442161.Peer reviewe
    corecore