9,198 research outputs found
On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs
Modern networks are of huge sizes as well as high dynamics, which challenges
the efficiency of community detection algorithms. In this paper, we study the
problem of overlapping community detection on distributed and dynamic graphs.
Given a distributed, undirected and unweighted graph, the goal is to detect
overlapping communities incrementally as the graph is dynamically changing. We
propose an efficient algorithm, called \textit{randomized Speaker-Listener
Label Propagation Algorithm} (rSLPA), based on the \textit{Speaker-Listener
Label Propagation Algorithm} (SLPA) by relaxing the probability distribution of
label propagation. Besides detecting high-quality communities, rSLPA can
incrementally update the detected communities after a batch of edge insertion
and deletion operations. To the best of our knowledge, rSLPA is the first
algorithm that can incrementally capture the same communities as those obtained
by applying the detection algorithm from the scratch on the updated graph.
Extensive experiments are conducted on both synthetic and real-world datasets,
and the results show that our algorithm can achieve high accuracy and
efficiency at the same time.Comment: A short version of this paper will be published as ICDE'2018 poste
Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history
Spatial spread of infectious diseases among populations via the mobility of
humans is highly stochastic and heterogeneous. Accurate forecast/mining of the
spread process is often hard to be achieved by using statistical or mechanical
models. Here we propose a new reverse problem, which aims to identify the
stochastically spatial spread process itself from observable information
regarding the arrival history of infectious cases in each subpopulation. We
solved the problem by developing an efficient optimization algorithm based on
dynamical programming, which comprises three procedures: i, anatomizing the
whole spread process among all subpopulations into disjoint componential
patches; ii, inferring the most probable invasion pathways underlying each
patch via maximum likelihood estimation; iii, recovering the whole process by
assembling the invasion pathways in each patch iteratively, without burdens in
parameter calibrations and computer simulations. Based on the entropy theory,
we introduced an identifiability measure to assess the difficulty level that an
invasion pathway can be identified. Results on both artificial and empirical
metapopulation networks show the robust performance in identifying actual
invasion pathways driving pandemic spread.Comment: 14pages, 8 figures; Accepted by IEEE Transactions on Cybernetic
Unifying Urban-Rural Public Cultural Service System: Taking Chongqing as an Example
In the 18th Third plenary Session, the Party put the enhancement of cultural building among the top rank of their executive purposes, to make it come true, the unified building of urban-and-rural public cultural service system becomes the largest breach to breakthrough. This thesis, on the basis of defining the concept of unified building of urban-and-rural public cultural service system, gives an adequate introduction to How does Chongqing explore its way in dealing this task, and points out four challenges in respects of dual economic structure, public cultural services consuming ability, the quantity of public cultural facilities and residents’ cultural cultivation of both areas. At last, the thesis gives four effective solutions to the task; they are: top-down planning, offering cultural services of public interests, giving more official supports and encouraging social sector’s involvement
- …