157 research outputs found

    Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3_3 and CrGeTe3_3 monolayers

    Full text link
    Magnetic anisotropy is crucially important for the stabilization of two-dimensional (2D) magnetism, which is rare in nature but highly desirable in spintronics and for advancing fundamental knowledge. Recent works on CrI3_3 and CrGeTe3_3 monolayers not only led to observations of the long-time-sought 2D ferromagnetism, but also revealed distinct magnetic anisotropy in the two systems, namely Ising behavior for CrI3_3 versus Heisenberg behavior for CrGeTe3_3. Such magnetic difference strongly contrasts with structural and electronic similarities of these two materials, and understanding it at a microscopic scale should be of large benefits. Here, first-principles calculations are performed and analyzed to develop a simple Hamiltonian, to investigate magnetic anisotropy of CrI3_3 and CrGeTe3_3 monolayers. The anisotropic exchange coupling in both systems is surprisingly determined to be of Kitaev-type. Moreover, the interplay between this Kitaev interaction and single ion anisotropy (SIA) is found to naturally explain the different magnetic behaviors of CrI3_3 and CrGeTe3_3. Finally, both the Kitaev interaction and SIA are further found to be induced by spin-orbit coupling of the heavy ligands (I of CrI3_3 or Te of CrGeTe3_3) rather than the commonly believed 3d magnetic Cr ions

    Room Temperature Quantum Spin Hall Insulators with a Buckled Square Lattice

    Full text link
    Two-dimensional (2D) topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are excellent candidates for coherent spin transport related applications because the edge states of 2D TIs are robust against nonmagnetic impurities since the only available backscattering channel is forbidden. Currently, most known 2D TIs are based on a hexagonal (specifically, honeycomb) lattice. Here, we propose that there exists the quantum spin Hall effect (QSHE) in a buckled square lattice. Through performing global structure optimization, we predict a new three-layer quasi-2D (Q2D) structure which has the lowest energy among all structures with the thickness less than 6.0 {\AA} for the BiF system. It is identified to be a Q2D TI with a large band gap (0.69 eV). The electronic states of the Q2D BiF system near the Fermi level are mainly contributed by the middle Bi square lattice, which are sandwiched by two inert BiF2 layers. This is beneficial since the interaction between a substrate and the Q2D material may not change the topological properties of the system, as we demonstrate in the case of the NaF substrate. Finally, we come up with a new tight-binding model for a two-orbital system with the buckled square lattice to explain the low-energy physics of the Q2D BiF material. Our study not only predicts a QSH insulator for realistic room temperature applications, but also provides a new lattice system for engineering topological states such as quantum anomalous Hall effect.Comment: 17pages, 4 figures Accepted by nano letter

    First Principles Study of Adsorption of O2O_{2} on Al Surface with Hybrid Functionals

    Full text link
    Adsorption of O2O_{2} molecule on Al surface has been a long standing puzzle for the first principles calculation. We have studied the adsorption of O2O_{2} molecule on the Al(111) surface using hybrid functionals. In contrast to the previous LDA/GGA, the present calculations with hybrid functionals successfully predict that O2O_{2} molecule can be absorbed on the Al(111) surface with a barrier around 0.2∼\thicksim0.4 eV, which is in good agreement with experiments. Our calculations predict that the LUMO of O2O_{2} molecule is higher than the Fermi level of the Al(111) surface, which is responsible for the barrier of the O2O_{2} adsorption.Comment: 14 pages, 5 figure
    • …
    corecore