23,494 research outputs found

    Interlayer tunnelling in Bi2Sr2CaCu2O8+d single crystals

    Get PDF
    We present measurements of the intrinsic quasi-particle conductivity along the c-axis of 2212-BSCCO single-crystal mesa structures in the superconducting and normal states. Direct measurement of the mesa temperature enables corrections to be made for self-heating and permits the acquisition of reliable I-V characteristics over a wide range of temperatures and voltages. Unlike a conventional superconductor, there is no evidence for any change in the quasiparticle conductivity at Tc, consistent with precursor pairing of electrons in the normal state. At low temperatures the initial low-voltage linear conductivity exhibits a T2 dependence, approaching a limiting value at zero temperature

    Understanding the newly observed Y(4008) by Belle

    Full text link
    Very recently a new enhancement around 4.05 GeV was observed by Belle experiment. In this short note, we discuss some possible assignments for this enhancement, i.e. ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state. In these two assignments, Y(4008) can decay into J/ψπ0π0J/\psi\pi^0\pi^0 with comparable branching ratio with that of Y(4008)J/ψπ+πY(4008)\to J/\psi\pi^+\pi^-. Thus one suggests high energy experimentalists to look for Y(4008) in J/ψπ0π0J/\psi\pi^0\pi^0 channel. Furthermore one proposes further experiments to search missing channel DDˉD\bar{D}, DDˉ+h.c.D\bar{D}^*+h.c. and especially χcJπ+ππ0\chi_{cJ}\pi^+\pi^-\pi^0 and ηcπ+ππ0\eta_c\pi^+\pi^-\pi^0, which will be helpful to distinguish ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte

    Adversarial Deep Structured Nets for Mass Segmentation from Mammograms

    Full text link
    Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}Comment: Accepted by ISBI2018. arXiv admin note: substantial text overlap with arXiv:1612.0597

    Many-body effects in tracer particle diffusion with applications for single-protein dynamics on DNA

    Full text link
    30% of the DNA in E. coli bacteria is covered by proteins. Such high degree of crowding affect the dynamics of generic biological processes (e.g. gene regulation, DNA repair, protein diffusion etc.) in ways that are not yet fully understood. In this paper, we theoretically address the diffusion constant of a tracer particle in a one dimensional system surrounded by impenetrable crowder particles. While the tracer particle always stays on the lattice, crowder particles may unbind to a surrounding bulk and rebind at another or the same location. In this scenario we determine how the long time diffusion constant D{\cal D} (after many unbinding events) depends on (i) the unbinding rate of crowder particles koffk_{\rm off}, and (ii) crowder particle line density ρ\rho, from simulations (Gillespie algorithm) and analytical calculations. For small koffk_{\rm off}, we find Dkoff/ρ2{\cal D}\sim k_{\rm off}/\rho^2 when crowder particles are immobile on the line, and DDkoff/ρ{\cal D}\sim \sqrt{D k_{\rm off}}/\rho when they are diffusing; DD is the free particle diffusion constant. For large koffk_{\rm off}, we find agreement with mean-field results which do not depend on koffk_{\rm off}. From literature values of koffk_{\rm off} and DD, we show that the small koffk_{\rm off}-limit is relevant for in vivo protein diffusion on a crowded DNA. Our results applies to single-molecule tracking experiments.Comment: 10 pages, 8 figure

    Mostly Music: Sounds of China, Sep. 14, 2001

    Get PDF
    Betty Xiang, Wei Yanghttps://neiudc.neiu.edu/mostlymusic/1008/thumbnail.jp
    corecore