5,616 research outputs found

    Pre-alternative algebras and pre-alternative bialgebras

    Full text link
    We introduce a notion of pre-alternative algebra which may be seen as an alternative algebra whose product can be decomposed into two pieces which are compatible in a certain way. It is also the "alternative" analogue of a dendriform dialgebra or a pre-Lie algebra. The left and right multiplication operators of a pre-alternative algebra give a bimodule structure of the associated alternative algebra. There exists a (coboundary) bialgebra theory for pre-alternative algebras, namely, pre-alternative bialgebras, which exhibits all the familiar properties of the famous Lie bialgebra theory. In particular, a pre-alternative bialgebra is equivalent to a phase space of an alternative algebra and our study leads to what we called PAPA-equations in a pre-alternative algebra, which are analogues of the classical Yang-Baxter equation.Comment: 34 page

    Divide and Fuse: A Re-ranking Approach for Person Re-identification

    Full text link
    As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a "Divide and use" re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.Comment: Accepted by BMVC201

    Multidimensional Scaling on Multiple Input Distance Matrices

    Full text link
    Multidimensional Scaling (MDS) is a classic technique that seeks vectorial representations for data points, given the pairwise distances between them. However, in recent years, data are usually collected from diverse sources or have multiple heterogeneous representations. How to do multidimensional scaling on multiple input distance matrices is still unsolved to our best knowledge. In this paper, we first define this new task formally. Then, we propose a new algorithm called Multi-View Multidimensional Scaling (MVMDS) by considering each input distance matrix as one view. Our algorithm is able to learn the weights of views (i.e., distance matrices) automatically by exploring the consensus information and complementary nature of views. Experimental results on synthetic as well as real datasets demonstrate the effectiveness of MVMDS. We hope that our work encourages a wider consideration in many domains where MDS is needed

    Detecting Oriented Text in Natural Images by Linking Segments

    Full text link
    Most state-of-the-art text detection methods are specific to horizontal Latin text and are not fast enough for real-time applications. We introduce Segment Linking (SegLink), an oriented text detection method. The main idea is to decompose text into two locally detectable elements, namely segments and links. A segment is an oriented box covering a part of a word or text line; A link connects two adjacent segments, indicating that they belong to the same word or text line. Both elements are detected densely at multiple scales by an end-to-end trained, fully-convolutional neural network. Final detections are produced by combining segments connected by links. Compared with previous methods, SegLink improves along the dimensions of accuracy, speed, and ease of training. It achieves an f-measure of 75.0% on the standard ICDAR 2015 Incidental (Challenge 4) benchmark, outperforming the previous best by a large margin. It runs at over 20 FPS on 512x512 images. Moreover, without modification, SegLink is able to detect long lines of non-Latin text, such as Chinese.Comment: To Appear in CVPR 201
    • …
    corecore