91 research outputs found

    Water promoted photocatalytic Cβ-O bonds hydrogenolysis in lignin model compounds and lignin biomass conversion to aromatic monomers

    Get PDF
    Photocatalysis has proved its potential in cleaving the Cβ-O linkages between the natural aromatic units in lignin biomass and converting abundant lignin biomass to valuable aromatic monomer products. However, the slow reaction rate and low selectivity for aromatic monomers still hinder its future industrial implementation. To address these challenges in photocatalytic Cβ-O bond fragmentation, a Zn/S rich phase zinc indium sulfide photocatalyst was developed to promote hydrogenolysis of Cβ-O linkages in lignin. In this work, water is for the first time, used as the hydrogen donor and can significantly promote the photocatalytic process by eliminating the limitation of protons supply. The reaction selectivity for aromatic monomers increased by 170% and PP-ol conversion rate raised by 58% comparing to the reaction condition without water. Notably, complete conversion of lignin model compounds with an expectational improved reaction rate and over 90% selectivity for aromatic monomers have been achieved in this study. The isotopic labeling experiments and kinetic isotope effects (KIE) measurements also indicate that the dissociation of the O–H bond in water which provides protons to the Cβ-O bond hydrogenolysis process is a critical step to this reaction. Mechanistic studies reveal that the dehydrogenated radical intermediates are initially generated by the oxidation of photogenerated holes, and the protons generated from photocatalytic water splitting are superior in facilitating the subsequently hydrogenolysis process of Cβ-O bonds. This study provides a new and effective strategy to promote the cleavage of Cβ-O linkages and is helpful for the future development of photocatalytic lignin valorization

    Profiling of mismatch discrimination in RNAi enabled rational design of allele-specific siRNAs

    Get PDF
    Silencing specificity is a critical issue in the therapeutic applications of siRNA, particularly in the treatment of single nucleotide polymorphism (SNP) diseases where discrimination against single nucleotide variation is demanded. However, no generally applicable guidelines are available for the design of such allele-specific siRNAs. In this paper, the issue was approached by using a reporter-based assay. With a panel of 20 siRNAs and 240 variously mismatched target reporters, we first demonstrated that the mismatches were discriminated in a position-dependent order, which was however independent of their sequence contexts using position 4th, 12th and 17th as examples. A general model was further built for mismatch discrimination at all positions using 230 additional reporter constructs specifically designed to contain mismatches distributed evenly along the target regions of different siRNAs. This model was successfully employed to design allele-specific siRNAs targeting disease-causing mutations of PIK3CA gene at two SNP sites. Furthermore, conformational distortion of siRNA-target duplex was observed to correlate with the compromise of gene silencing. In summary, these findings could dramatically simplify the design of allele-specific siRNAs and might also provide guide to increase the specificity of therapeutic siRNAs

    A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia

    Get PDF
    Introduction: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. Methods: We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. Results: The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100). Conclusions: The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies

    The impact of empirical Marshall vein ethanol infusion as a first-choice intraoperative strategy on the long-term outcomes in patients with persistent atrial fibrillation undergoing mitral isthmus ablation

    Get PDF
    BackgroundMarshall vein ethanol infusion (MVEI) as an additional therapy to conventional catheter ablation (CA) has been proved to be efficacious in patients with persistent atrial fibrillation (PeAF). However, whether empirical MVEI could be the first-line strategy in mitral isthmus (MI) ablation has seldom been investigated. Here, we aim to compare the efficacy, safety, and long-term outcomes between provisional and empirical MVEI in PeAF patients undergoing the index MI ablation procedure.MethodsWe enrolled 133 patients with PeAF either in the provisional group (n = 38, MVEI was performed when conventional endocardial and/or epicardial ablation procedures were inadequate to achieve bidirectional MI block) or in the empirical group (n = 95, MVEI was performed empirically before MI CA).ResultsAll of the baseline characteristics were comparable. Less spontaneous or inducible atrial tachycardias (ATs) were encountered in the empirical group of patients (P < 0.001). More epicardial ablations were applied (26.3% vs. 9.5%, P = 0.016) and a higher incidence of CA-facilitated restoration of sinus rhythm was recorded (86.8% vs. 11.7%, P < 0.001) in the provisional group of patients. Although more fluoroscopy time (6.4[4.2, 9.3] vs. 9.5[5.9, 11.6] min, P = 0.019) and radiation exposure (69.0[25.3, 160.2] vs. 122.0[62.5, 234.1] mGy, P = 0.010) were documented in the empirical group with comparable procedure time, less time (455.9 ± 192.2 vs. 366.5 ± 161.3 s, P = 0.038) was consumed to achieve bidirectional MI block during endocardial ablation in the provisional group. Incidences of procedure-related complications were similar between the two groups. During a 16.5 ± 4.4-month follow-up, the empirical group of patients showed a significantly higher rate of freedom from AT recurrence (95.8% vs. 81.6%, log-rank P = 0.003), while the rate of freedom from AF or atrial tachyarrhythmias (combining AF and AT) was similar. Both univariate (HR 0.19, 95% CI 0.05–0.64, P = 0.008) and multivariate (HR 0.25, 95% CI 0.07–0.92, P = 0.037) Cox regression analyses indicated that empirical MVEI was independently associated with lower long-term AT recurrence.ConclusionAmong patients with PeAF who underwent the index MI ablation procedure, empirical MVEI could reduce endocardial MI ablation time and provide greater long-term freedom from AT recurrence

    Adsorption of Tea Polyphenols using Microporous Starch: A Study of Kinetics, Equilibrium and Thermodynamics

    No full text
    Microporous starch (MPS) granules were formed by the partial hydrolysis of starch using α–amylase and glucoamylase. Due to its biodegradability and safety, MPS was employed to adsorb tea polyphenols (TPS) based on their microporous characteristics. The influences of solution pH, time, initial concentration and temperature on the adsorptive capacity were investigated. The adsorption kinetics data conformed to the pseudo second–order kinetics model, and the equilibrium adsorption data were well described by the Langmuir isotherm model. According to the fitting of the adsorption isotherm formula, the maximum adsorption capacity of TPS onto MPS at pH 6.7 and T = 293 K was approximately 63.1 mg/g. The thermodynamic parameters suggested that the adsorption of TPS onto MPS was spontaneous and exothermic. Fourier transform infrared (FT–IR) analysis and the thermodynamics data were consistent with a physical adsorption mechanism. In addition, MPS-loaded TPS had better stability during long-term storage at ambient temperature

    Carbon Nanodot-Decorated Ag@SiO<sub>2</sub> Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays

    No full text
    A novel immunoassay protocol was demonstrated by the combination of fluorescent carbon nanodots (CNDs) and Ag@SiO<sub>2</sub> surface-enhanced Raman scattering (SERS) tag nanoparticles into ensembles for a bifunctional nanoplatform. The CND-decorated Ag@SiO<sub>2</sub> nanoparticles were constructed for sensitive fluorescence and SERS immunoassays. The silica shell thickness and amount of Ag@SiO<sub>2</sub> nanoparticles were optimized for availability of strong fluorescence emission. The considerably large Raman scattering cross section of in situ-generated actual Raman reporter, 4,4′-dimercaptoazobenzene, from the apparent reporter <i>p</i>-aminothiophenol modified on the surfaces of Ag nanoparticles upon illumination of laser compensated for the reduction of SERS signals resulting from silica coating to a great degree. The antibody-modified bifunctional nanoparticles were captured by antibody-modified quartz slides in the presence of antigens in the sandwich structures for fluorescence and SERS immunoassays. The bifunctional nanoparticles could be used not only as bimodal probes for biodetection but also as bimodal tracers for bioimaging

    anexperimentalstudyonstressstrainbehaviorandconstitutivemodelofhardfillmaterial

    No full text
    Hardfill is a new type of artificially cemented material for dam construction works, with a wide application prospect. Its mechanical behavior lies between concrete and rockfill materials. A series of large-scale triaxial tests are performed on hardfill specimens at different ages, and the stress-strain behavior of hardfill is further discussed. The strength and stress-strain relationship of hardfill materials show both frictional mechanism and cohesive mechanism. An age-related constitutive model of hardfill is developed, which is a parallel model consisting of two components, rockfill component and cementation component. Moreover, a comparison is made between the simulated and the experimental results, which shows that the parallel model can reflect the mechanical characteristics of both rockfill-like nonlinearity and concrete-like age relativity. In addition, a simplified method for the determination of parameters is proposed
    corecore