23 research outputs found

    Conceptual design of a novel power-augmented hydrokinetic run-of- river turbine

    Get PDF
    Other than the water stream from ocean, river stream is also being considered as a viable source of renewable energy. Many researchers has approached and started the studies of river stream in order to harness the maximum power from the rivers. River stream offers promising energy especially to the rural areas which are surrounded by rivers. From previous studies, it shows that majority of the hydrokinetic run-of-river turbine systems are designed in vertical and horizontal axis. Besides, some of the vertical and horizontal axis turbines are also enclosed by the duct or diffuser in order to guide the river stream and increase the flow velocity. However, the design of the shape of diffuser faced the challenges during fabrication phase and additional supporting structures are needed during installation, causing the increases in the overall cost. In this paper, the authors would like to propose a conceptual design of a novel power-augmented hydrokinetic run-of-river turbine which utilizes the concept of cross-axis wind turbine and simple augmented guide vane. This conceptual design of hydrokinetic turbine able to capture the advantages of both the horizontal and vertical axis turbines. Helical blade design was chosen for this conceptual design due to its ability to capture the skewed flow created by the difference in velocity of upper and lower faces of turbine. When the vertical-axis turbine rotates, the angle of attack of each blade varies cyclically. The cyclical variation of the angle of attack creates cyclical blade loading, which increases the fatigue experienced by blades. Most of the cyclical loading can be alleviated by using helical instead of straight blades. The conceptual design of this cross-axis turbine with helical blade is similar to the Gorlov helical turbine but there are some differences in the radial blades which are designed as 8 degrees upper and lower respectively to the horizontal axis of the connector hub. The two layers radial blade-rotors are offset by 60 degrees. The turbine system is designed by intercepting the two guide vanes in between three individual turbines and also two diffuservanes as the outer part of the system. The NACA 0015 airfoil profile is used as turbine blade in this design. The construction costs of cross-axis concept turbine and the helical blades are relatively low (about 30%) compared with the huge ducted and diffuser turbine. A 3D model was constructed and simulated by using the computational fluid dynamics software, ANSYS-Fluent. In the simulation, the velocity of water flow and the rotational speed of turbine were increased with the integration of the guide-vane and diffuser features. It is estimated that this conceptual design turbine will achieve 60% increase in energy gain

    Enhanced Virulence of Chlamydia muridarum Respiratory Infections in the Absence of TLR2 Activation

    Get PDF
    Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces
    corecore