338 research outputs found

    Effect of different doses of dexmedetomidine on lung function and tissue cell apoptosis in a rat model of hyperoxic acute lung injury

    Get PDF
    Purpose: To study the effect of different doses of dexmedetomidine on lung function and lung tissue cell apoptosis in a rat model of hyperoxic acute lung injury. Methods: Five groups of healthy male Sprague-Dawley rats were used: normal rats, untreated hyperoxic rats, and hyperoxic rats given 3 different doses of dexmedetomidine, with 20 rats in each group. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined usingenzyme-linked immunosorbent assay (ELISA). Parietal paraffin cuts were taken from the right upper lobe for measurement of apoptosis using in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and the apoptosis index was calculated. Results: At 24 and 48 h, the levels of IL-6 and TNF-α in the hyperoxia model group were significantly higher than those in the normal control group, and their levels in the middle- and high-dose groups were markedly lowered, relative to untreated hyperoxia rats (p < 0.05). Apoptosis index in the hyperoxia model rats significantly increased, relative to normal rats (p < 0.05). The apoptosis index in the mediumand high-dose groups decreased significantly (p < 0.05). Conclusion: Dexmedetomidine inhibits inflammatory responses caused by high concentration of oxygen inhalation, minimizes lung injury, improves lung function and inhibits lung apoptosis. Keywords: Dexmedetomidine, Hyperoxia, Acute lung injury, Lung function, Apoptosi

    Fluid overload–associated large B-cell lymphoma with primary biliary cirrhosis: A case report

    Get PDF
    The 5th edition of World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) is characterized by its hierarchical system for classification and novel entities/types. Considering the significant discrepancy in clinical manifestations and prognosis, fluid overload–associated large B-cell lymphoma (FOALBCL) has been a new addition to the WHO-HAEM5, being distinct from the traditional diagnosis of primary effusion lymphoma. In this manuscript, we report a patient who was diagnosed with FOALBCL that a novel entity introduced in the WHO-HAEM5. It is an instance of a successful application of the updated WHO-HAEM5 and indicates that the ′Blue Book′ could confer convenience and benefits on both patients and clinicians. Moreover, the patient combined primary biliary cirrhosis (PBC), which is a relatively rare condition compared to the underlying medical condition of viral cirrhosis. Due to atypical clinical symptoms and invasive biopsy of lymphoma, sometimes, diagnoses might be undesired, which eventually leads to a poor prognosis. With this case report, it reminds not just hematologists but also other specialists to pay attention to the updates and revisions of the classifications of lymphoma

    Effect of Corilagin on the Proliferation and NF- κ

    Get PDF
    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P<0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P<0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P<0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P<0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study

    Comparative transcriptome and metabolome profiles of the leaf and fruits of a Xianjinfeng litchi budding mutant and its mother plant

    Get PDF
    Background: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant.Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis.Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant’s fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis.Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield

    Nucleus-targeted Dmp1 transgene fails to rescue dental defects in Dmp1 null mice

    Get PDF
    Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with αvβ3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing (NLS)DMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the (NLS)DMP1 transgenic mice with Dmp1 null mice to express the (NLS)DMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that (NLS)DMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis

    Single and combined use of red cell distribution width, mean platelet volume, and cancer antigen 125 for differential diagnosis of ovarian cancer and benign ovarian tumors

    No full text
    Abstract Background Cancer is widely believed to result from chronic inflammation, and red cell distribution width (RDW) and mean platelet volume (MPV) are considered as inflammatory markers for cancer. We investigated the values of RDW, MPV, and cancer antigen 125 (CA125), alone or in combination, for distinguishing between ovarian cancer and benign ovarian tumors. Methods The study included 326 patients with ovarian cancer, 290 patients with benign ovarian tumors, and 162 control subjects. Hematologic tests were performed at initial diagnosis. Results RDW was increased and MPV was decreased in the ovarian cancer group compared with the control and benign ovarian tumor groups. RDW was positively correlated and MPV was negatively correlated with cancer stage. Area under the curve (AUC) analysis for ovarian cancer versus benign ovarian tumors revealed that the specificity and sensitivity were increased for the combination of MPV and CA125 compared with either marker alone, and the specificity was increased for the combination of RDW and CA125, compared with either alone. The AUCs for RDW plus CA125 and MPV plus CA125 were significantly larger than for any of the markers alone. Conclusions In conclusion, combinations of the markers RDW, MPV, and CA125 may improve the differential diagnosis of ovarian cancer and benign ovarian tumors

    Expression Pattern and Protein Localization of a Yellow-Green Leaf 6

    No full text

    Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    No full text
    Abstract Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis

    A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences

    No full text
    Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are ∼500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5–7 days) and suitable for synthesizing long segments of DNA (5–6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb
    • …
    corecore