4 research outputs found

    Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery

    No full text
    Nucleolus tracking and nucleus-targeted photodynamic therapy are attracting increasing attention due to the importance of nucleolus and the sensitivity of nucleus to various therapeutic stimuli. Herein, a new class of multifunctional fluorescent carbon quantum dots (or carbon dots, CDs) synthesized via the one-pot hydrothermal reaction of <i>m</i>-phenylenediamine and l-cysteine was reported to effectively target nucleolus. The as-prepared CDs possess superior properties, such as low-cost and facile synthesis, good water dispersibility, various surface groups for further modifications, prominent photostability, excellent compatibility, and rapid/convenient/wash-free staining procedures. Besides, as compared with SYTO RNASelect (a commonly used commercial dye for nucleolus imaging) that can only image nucleolus in fixed cells, the CDs can realize high-quality nucleolus imaging in not only fixed cells but also living cells, allowing the real-time tracking of nucleolus-related biological behaviors. Furthermore, after conjugating with protoporphyrin IX (PpIX), a commonly used photosensitizer, the resultant CD–PpIX nanomissiles showed remarkably increased cellular uptake and nucleus-targeting properties and achieved greatly enhanced phototherapeutic efficiency because the nuclei show poor tolerance to reactive oxygen species produced during the photodynamic therapy. The in vivo experiments revealed that the negatively charged CD–PpIX nanomissiles could rapidly and specifically target a tumor site after intravenous injection and cause efficient tumor ablation with no toxic side effects after laser irradiation. It is believed that the present CD-based nanosystem will hold great potential in nucleolus imaging and nucleus-targeted drug delivery and cancer therapy

    Correction to “Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery”

    No full text
    Correction to “Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery

    Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy

    No full text
    Copper-containing nanomaterials have been applied in various fields because of their appealing physical, chemical, and biomedical properties/functions. Herein, for the first time, a facile, room-temperature, and one-pot method of simply mixing copper ions and sulfur-doped carbon dots (CDs) is developed for the synthesis of copper/carbon quantum dot (or CD)-crosslinked nanosheets (CuCD NSs). The thus-obtained CuCD NSs with the size of 20–30 nm had a high photothermal conversion efficiency of 41.3% and good photothermal stability. Especially, after coating with thiol-polyethylene glycol and fluorescent molecules, the resultant CuCD NSs could selectively target tumor tissues and realize multimodal (photoacoustic, photothermal, and fluorescence) imaging-guided cancer therapy. More importantly, our CuCD NSs exhibited laser-triggered cytosolic delivery, lysosomal escape, and nuclear-targeting properties, which greatly enhanced their therapeutic efficacy. The significantly enhanced tumor accumulation of CuCD NSs after in situ tumor-site laser irradiation was also observed in in vivo experiments. These in vitro and in vivo events occurring during the continuous laser irradiation have not been observed. Overall, this work develops a CD-assisted synthetic method of photothermal nanoagents for triple-modal imaging-guided phototherapy and deepens our understanding of the action mechanism of photothermal therapy, which will promote the development of nanomedicine and beyond

    Universal Cell Surface Imaging for Mammalian, Fungal, and Bacterial Cells

    No full text
    Because of the distinct surface structures of different cells (mammalian cells, fungi, and bacteria), surface labeling for these cells requires a variety of fluorescent dyes. Besides, fluorescent dyes (especially the commercial ones) for staining Gram-negative bacterial cell walls are still lacking. Herein, a conformation-adjustable glycol chitosan (GC) derivative (GC-PEG cholesterol-FITC) with “all-in-one” property was developed to realize universal imaging for plasma membranes of mammalian cells (via hydrophobic interaction) and cell walls of fungal and bacterial cells (via electrostatic interaction). By comparing the different staining behaviors of GC-PEG cholesterol-FITC and three other analogs (GC-PEG-FITC, GC-FITC, and cholesterol-PEG-FITC), we have elucidated the different roles the hydrophobic and electrostatic interactions play in the staining performance of these different cells. Such a simple, noncytotoxic, economic, and universal cell surface staining reagent will be very useful for investigating cell surface-related biological events and advancing cell surface engineering of various types of cells
    corecore