62 research outputs found

    Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration

    Get PDF
    Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs). Aberrations in several cytoskeletal proteins, such as tau have been implicated in the pathogenesis of neurodegenerative diseases, could be initiating factors in glaucoma progression and occurring prior to axon degeneration. Developmentally regulated brain protein (Drebrin or DBN1) is an evolutionarily conserved actin-binding protein playing a prominent role in neurons and is implicated in neurodegenerative diseases. However, the relationship between circulating DBN1 levels and RGC degeneration in glaucoma patients remains unclear. In our preliminary study, we detected drebrin protein in the plasma of glaucoma patients using proteomic analysis. Subsequently, we recruited a total of 232 patients including primary angle-closure glaucoma (PACG), primary open-angle glaucoma (POAG) and Posner-Schlossman syndrome (PS) and measured its DBN1 plasma levels. We observed elevated DBN1 plasma levels in patients with primary glaucoma but not in patients with PS compared to nonaxonopathic controls. Interestingly, in contrast to tau plasma levels increased in all groups of patients, elevated drebrin plasma levels correlated with retinal nerve fiber layer defect (RNFLD) in glaucoma patients. To further explore the expression of DBN1 in neurodegeneration, we conducted experiment of optic nerve crush (ONC) models, and observed increased expression of DBN1 in the serum as well as in the retina and then decreased after ONC. This result reinforces the potentiality of circulating DBN1 levels are increased in glaucoma patients with neurodegeneration. Taken together, our findings suggest that circulating DBN1 levels correlated with RNFLD and may reflect the severity of RGCs injury in glaucoma patients. Combining measurement of circulating drebrin and tau levels may be a useful indicator for monitoring progression of neurodegenerative diseases

    Atypical radio pulsations from magnetar SGR 1935+2154

    Full text link
    Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.Comment: 47 pages, 11 figure

    Inhibition of Cardiac Sympathetic Afferent Reflex and Sympathetic Activity by Baroreceptor and Vagal Afferent Inputs in Chronic Heart Failure

    Get PDF
    BACKGROUND: Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats

    Hydrogen sulfide in paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in chronic heart failure rats.

    Get PDF
    BACKGROUND: Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H(2)S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H(2)S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF). METHODOLOGY/PRINCIPAL FINDINGS: CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H(2)S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H(2)S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H(2)S level in the PVN in both sham-operated rats and CHF rats. CONCLUSIONS: Exogenous H(2)S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H(2)S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats

    Endothelin-1 in paraventricular nucleus modulates cardiac sympathetic afferent reflex and sympathetic activity in rats.

    Get PDF
    Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats.In anaesthetized Sprague-Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ET(A) receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1.Exogenous activation of ET(A) receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN

    Intermedin in the paraventricular nucleus attenuates cardiac sympathetic afferent reflex in chronic heart failure rats.

    No full text
    BACKGROUND AND AIM: Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats. CONCLUSION: IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response
    • …
    corecore