30 research outputs found

    Comparison between Chinese Code and Eurocode on the impact sound insulation requirements of the residential floor

    Get PDF
    At present, the impact sound insulation performance of the residential floor attracts increasing attention, which is a critical index to evaluate the physical performance of the residential building. Improving the sound insulation performance is an effective measure to improve the living quality and solve the contradictions between neighbors. Therefore, many sound insulation standards have been established to guide the design of building sound insulation. In this paper, comparisons between Chinese code and Eurocode on the impact sound insulation requirements of the residential floor were presented, including the evaluation parameter and the limit value of sound insulation. In addition, the applicability of limit value of sound insulation standard for each country was analyzed in detail through the existing experimental data of different floor structures, and then reasonable suggestions were put forward

    Characterization of physico-chemical and bio-chemical compositions of selected four strawberry cultivars

    Get PDF
    The physico-chemical and bio-chemical compositions of Hongyan, Tiangxiang, Tongzi Ι and Zhangji strawberries inChinawere analyzed. Their values were pH 3.42~3.73, titration acidity 0.63~0.79%, total soluble sugars 5.26~8.95 g/100 gfresh weight (FW), ascorbic acid 21.38~42.89 mg/100 gFW, total phenolics 235.12~444.73 mg/100 gFW, pectin 82.84~96.13 mg/100 gFW, total organic acids 874.30~1216.27 mg/100 gFW, Individual phenolic compounds other than anthocyanins 7.60~12.18 mg/100 gFW, free amino acids 13.35~32.66 mg/100 gFW, monomeric anthocyanins 4.47~47.19 mg/100gFW, antioxidant capacity of ·DPPH 14.14~18.87 and FRAP 7.97~10.54 equal to mg/100 gVc, polyphenol oxidase (PPO) activity 0~0.42 Abs/min, peroxidase (POD) activity 0.17~0.34 Abs/min and pectin methyl esterase (PME) activity 0.012~0.018 mL/min. Tongzi Ι was most suitable for food processing due to the highest titration acidity, total phenolics, pectin, total organic acids, monomeric anthocyanins, antioxidant capacity of ·DPPH and FRAP with lower PPO, POD and PME activity

    Experimental Study on Bending Performance of Composite Sandwich Panel with New Mixed Core

    Get PDF
    This paper presents an experimental investigation of bending performance of composite sandwich panels with new mixed core, sandwich panels were tested by four-point bending test. Parametric study was conducted to investigate the influence of different core materials on the failure mode, ultimate bearing capacity, stiffness and ductility of composite sandwich panels. The results of the experimental investigation showed that the mixed core can change the failure mode of sandwich panels. The failure mode of wooden panels is characterized by tensile failure of bottom wood, and the failure mode of composite sandwich panels with wood core is that the surface layer and core are stripped and the webs are damaged by shear, while the failure mode of composite sandwich panels with wood and polyurethane foam mixed core is the shear failure of the web. Composite sandwich panels with GFRP-wood-polyurethane foam core have better bending performance and can effectively reduce the weight of panels

    Plasma MicroRNA Pair Panels as Novel Biomarkers for Detection of Early Stage Breast Cancer

    Get PDF
    Introduction: Breast cancer is the second leading cause of cancer death among females. We sought to identify microRNA (miRNA) markers in breast cancer, and determine whether miRNA expression is predictive of early stage breast cancer. The paired panel of microRNAs is promising.Methods: Global miRNA expression profiling was performed on three pooling samples of plasma from breast cancer, benign lesion and normal, using next generation sequencing technology. Thirteen microRNAs (hsa-miR-21-3p, hsa-miR-192-5p, hsa-miR-221-3p, hsa-miR-451a, hsa-miR-574-5p, hsa-miR-1273g-3p, hsa-miR-152, hsa-miR-22-3p, hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30e-5p, hsa-miR-324-3p, and hsa -miR-382-5p) were subsequently validated using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) in a cohort of 53 breast cancer, 40 benign lesions and 38 normal cases. The pairwise miRNA ratios were calculated as biomarkers to classify breast cancer.Results: According to the model used to predict breast cancer from benign lesions, a panel of five miRNA pairs had high diagnostic power with an AUC of 0.942. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of this model after 10-fold cross validation were 0.881, 0.775, 0.827, and 0.756, respectively. In addition, the other panels of miRNA pairs distinguishing the breast cancer from normal and non-cancer patients had good performance.Conclusion: Certain MicroRNA pairs were identified and deemed effective in breast cancer screening, especially when distinguishing cancer from benign lesions

    Experimental Research on Bending Performance of Wood-concrete Composite Slab with Screw Connections

    Get PDF
    The existing research primarily focuses on wood-concrete composite beams, with limited studies on the bending performance and effective width of wood-concrete composite slabs. A full-scale composite slab with screw connections was constructed and subjected to static load testing. The study extensively investigated the ultimate bearing capacity, load-deflection curves, interface slips, strain distributions of cross-section and effective width of the wood-concrete composite slab. It was found that the failure mechanism of the composite slab involved both bending and tensile failure of the wood beams. As the applied load intensified, a marked augmentation in the longitudinal strain of the concrete slab was observed; along the width direction, the longitudinal strain of concrete slab manifested a curved distribution. The precise determination of the effective width of the concrete slab within the composite floor could be accurately achieved via the utilization of a simplified computational approach. In order to simplify the analysis, the M-shaped section of composite slab was approximated as T-section composite beams when evaluating the bending behavior. The linear-elastic model was shown to be accurate in predicting the bending stiffness and load-carrying capacity of composite slabs

    Experimental and Analytical Investigation on Flexural Behavior of High-Strength Steel-Concrete Composite Beams

    No full text
    This research investigated the flexural behavior of high-strength steel (HSS)—concrete composite beams. The effect of concrete strength on the load-deflection behavior, flexural capacity, and ductility of HSS—concrete composite beams was investigated. Four full-scale HSS—concrete composite beam specimens were tested under static load. The test results demonstrate that the failure mode of HSS—concrete composite beams is flexural failure of the steel member and compression fracture of concrete at mid-span. The HSS—concrete composite beam exhibits good mechanical performance and deformation behavior. The ultimate bending strength and ductility of HSS—concrete composite beams were improved with the increased concrete strength. The theoretical results demonstrate that the simplified plastic method overestimates the ultimate bending strength of HSS—concrete composite beams. The main reason is that only a small part of the steel beam bottom shows plastic strengthening, which is not enough to make up for the strength loss caused by the steel near the neutral axis failure to yield and the relative interface slip. The nonlinear method based on material constitutive model could predict the load-bearing capacity accurately. After analyzing the ultimate bending capacity of 192 sample beams, the simplified plastic method was modified, and the theoretical method for ultimate bearing capacity of HSS—concrete composite beams was proposed

    Shear Stiffness of Notched Connectors in Glue Laminated Timber-Concrete Composite Beams Under Fire Conditions

    Get PDF
    Shear connectors ensure effective interaction between wood beams and concrete slabs of composite beams, and their properties noticeably affect the fire resistance of timber-concrete composite beams. To investigate the shear stiffness of notched connectors in glued laminated timber (GLT)-concrete composite beams under fire conditions, 16 shear tests were conducted. The effects of fire duration and notch length on shear properties of the connectors for a given spacing were studied. The fire tests indicated that the reduction of the notch length from 200 mm to 150 mm remarkably affected the failure mode of the shear specimens, changing from compression failure of notched wood to shear failure of notched concrete. The increase in fire duration reduced effective width of the notched wood, negatively affected the shear stiffness and shear capacity of the connectors, and the shear stiffness decreased more rapidly. The notch length did not have a substantial effect on the shear stiffness of connectors. Based on the experimental results, an analytical model to estimate the shear stiffness of notched connectors in GLT-concrete beam under fire conditions was established

    Nonlinear parameter identification of timber-concrete composite beams using long-gauge fiber optic sensors

    No full text
    A novel method for nonlinear parameter identification of partially composite beams using long-gauge strain responses is proposed in this paper. Firstly, theoretical analysis shows that neutral axis position of timber beam and concrete slab can be estimated by measured long-gauge strain and material properties. Then, distribution of curvature, bending stiffness, deflection and interface slip can be determined by identified neutral axis position. Secondly, timber-concrete composite beams connected by ductile connectors with different degree of composite action are designed to verify the presented method. Experimental results show that the estimated parameters (neutral axis position, bending stiffness and interface slip) can clearly reflect and quantify the deterioration process of partially composite beams. Meanwhile, both global and local responses can be predicted by long-gauge strain sensors. The predicted responses (deflection at mid-span and strain along the beam height) agree well with the test results when partially composite action is considered, the errors will be unacceptable without considering partially composite action. Hence, the presented method can be utilized for better understanding of mechanical properties of partially composite beams and performance assessment of existing composite structures

    Experimental Study on Bending Performance of Composite Sandwich Panel with New Mixed Core

    No full text
    This paper presents an experimental investigation of bending performance of composite sandwich panels with new mixed core, sandwich panels were tested by four-point bending test. Parametric study was conducted to investigate the influence of different core materials on the failure mode, ultimate bearing capacity, stiffness and ductility of composite sandwich panels. The results of the experimental investigation showed that the mixed core can change the failure mode of sandwich panels. The failure mode of wooden panels is characterized by tensile failure of bottom wood, and the failure mode of composite sandwich panels with wood core is that the surface layer and core are stripped and the webs are damaged by shear, while the failure mode of composite sandwich panels with wood and polyurethane foam mixed core is the shear failure of the web. Composite sandwich panels with GFRP-wood-polyurethane foam core have better bending performance and can effectively reduce the weight of panels

    Experimental and Finite Element Study on Bending Performance of Glulam-Concrete Composite Beam Reinforced with Timber Board

    No full text
    In this research, experimental research and finite element modelling of glulam-concrete composite (GCC) beams were undertaken to study the flexural properties of composite beams containing timber board interlayers. The experimental results demonstrated that the failure mechanism of the GCC beam was the combination of bend and tensile failure of the glulam beam. The three-dimensional non linear finite element model was confirmed by comparing the load-deflection curve and load-interface slip curve with the experimental results. Parametric analyses were completed to explore the impacts of the glulam beam height, shear connector spacing, timber board interlayer thickness and concrete slab thickness on the flexural properties of composite beams. The numerical outcomes revealed that with an increase of glulam beam height, the bending bearing capacity and flexural stiffness of the composite beams were significantly improved. The timber boards were placed on top of the glulam members and used as the formwork for concrete slab casting. In addition, the flexural properties of composite beams were improved with the increase of the timber board thickness. With the elevation of the shear connector spacing, the ultimate bearing capacity and bending stiffness of composite beams were decreased. The bending bearing capacity and flexural rigidity of the GCC beams were ameliorated with the increase of concrete slab thickness
    corecore