112 research outputs found

    Malaria elimination strategy and challenges in People’s Republic of China

    Get PDF

    Engineered M2a macrophages for the treatment of osteoarthritis

    Get PDF
    BackgroundMacrophage is a central regulator of innate immunity. Its M2 subsets, such as interstitial synovial macrophages, have been found to play critical roles in suppressing chronic inflammation and maintaining homeostasis within the joint. These macrophages have great potential as a disease-modifying cell therapy for osteoarthritis (OA). However, this has not yet been studied.MethodsMacrophages were isolated from the bone marrow of rats. We constructed a stable macrophage that “locked” in anti-inflammatory and pro-regenerative M2a polarity (L-M2a) by simultaneously knocking out tumor necrosis factor receptor 1 (TNFR1) and overexpressing IL-4 using Cas9-ribonuclear proteins (Cas9-RNP) and electroporation. In vitro, these L-M2a macrophages were treated with OA synovial fluid or co-cultured with OA chondrocytes or fibroblast-like synoviocytes (FLS). In vivo, L-M2a macrophages were injected intra-articularly to evaluate their homing and engrafting abilities and therapeutic effects on OA progression using a rat model.ResultsL-M2a macrophages displayed a typical anti-inflammatory phenotype similar to that of M2 macrophages in vitro. In OA microenvironment, L-M2a macrophages maintained a stable anti-inflammatory phenotype, whereas unmodified M2 macrophages lost their phenotype and switched to M1 polarity. L-M2a macrophages demonstrated a potent anti-inflammatory effect in crosstalk with OA-FLSs and an anti-degenerative effect in crosstalk with senescent OA chondrocytes. In vivo, compared with M2 macrophages and exosomes, L-M2a macrophages exhibited significantly superior therapeutic effects in OA by successfully resolving inflammation, restoring tissue homeostasis, and promoting cartilage regeneration.ConclusionThe engineered L-M2a macrophages maintained a superior anti-inflammatory and pro-regenerative capacity in the inflammatory OA microenvironment and represents an ideal new strategy for the disease-modifying therapy of OA

    Magnetic properties of Fe intercalation FexTaSe2

    Get PDF
    Intercalation of transition metal dichalcogenides with magnetic elements has been the subject of increasing research interest, aiming to explore novel magnetic materials with anisotropy and spin-orbit coupling. In this paper, two magnetic samples with varying Fe content have been prepared using different growth conditions via the chemical vapor transport method. A comprehensive investigation of the magnetic properties of the materials has been conducted using the Physical Property Measurement System (PPMS, EvercoolⅡ-9T, Quantum Design). The results reveal distinct features in the studied materials. Fe0.12TaSe2 exhibits significant ferromagnetism with a Curie transition temperature of 50 K. However, its in-plane magnetism is weak and no significant hysteresis loop is observed below the Curie temperature. On the other hand, Fe0.25TaSe2 exhibits antiferromagnetism without any hysteresis loop and has a Néel temperature up to 130 K. This finding is quite different from the intercalated iron in FexTaS2, where only an antiferromagnetic state occurs with x larger than 0.4. Our study thus provides updated insights into the magnetic properties of this new system and serves as a reference for future investigations of TaSe2 compounds with varying iron content

    Association Between SLC30A8 rs13266634 Polymorphism and Risk of T2DM and IGR in Chinese Population: A Systematic Review and Meta-Analysis

    Get PDF
    Introduction: Published data regarding the association between solute carrier family 30, member 8 (SLC30A8) rs13266634 polymorphism and type 2 diabetes mellitus (T2DM) and impaired glucose regulation (IGR) risks in Chinese population are in-consistent. The purpose of this meta-analysis was to evaluate the association between SLC30A8 rs13266634 and T2DM/IGR in a Chinese population.Material and Methods: Three English (PubMed, Embase, and Web of Science) and three Chinese databases (Wanfang, CNKI, and CBMD database) were used for searching articles from January 2005 to January 2018. Odds ratio (OR) and 95% confidence interval (95%CI) were calculated with the random-effect model. Trial sequential analysis was also utilized.Results: Twenty-eight case-control studies with 25,912 cases and 26,975 controls were included for SLC30A8 and T2DM. Pooled risk allele C frequency for rs13266634 was 60.6% (95%CI: 59.2–62.0%) in the T2DM group and 54.8% (95%CI: 53.2–56.4%) in the control group which had estimated OR of 1.23 (95%CI: 1.17–1.28). Individuals who carried major homozygous CC and heterozygous CT genotype were at 1.51 and 1.23 times higher risk of T2DM, respectively, than those carrying minor homozygous TT. The most appropriate genetic analysis model was the co-dominant model based on comparison of OR1, OR2 and OR3. Five articles that involved 4,627 cases and 6,166 controls were included for SLC30A8 and IGR. However, no association was found between SLC30A8 rs13266634 and IGR (C vs. T, OR = 1.13, 95%CI: 0.98–1.30, p = 0.082). TSA revealed that the pooled sample sizes of T2DM exceeded the estimated required information size but not the IGR.Conclusion: The present meta-analysis demonstrated that SLC30A8 rs13266634 was a potential risk factor for T2DM, and more studies should be performed to confirm the association between rs13266634 polymorphism and IGR

    Novel Human Bocavirus in Children with Acute Respiratory Tract Infection

    Get PDF
    Human bocavirus (HBoV) and HBoV2, two human bocavirus species, were found in 18 and 10 of 235 nasopharyngeal aspirates, respectively, from children hospitalized with acute respiratory tract infection. Our results suggest that, like HBoV, HBoV2 is distributed worldwide and may be associated with respiratory and enteric diseases
    • …
    corecore