30,704 research outputs found

    Observations of time delayed all-optical routing in a slow light regime

    Full text link
    We report an observation of a delayed all-optical routing/switching phenomenon based on ultraslow group velocity of light via nondegenerate four-wave mixing processes in a defected solid medium. Unlike previous demonstrations of enhanced four-wave mixing processes using the slow light effects, the present observation demonstrates a direct retrieval of the resonant Raman-pulse excited spin coherence into photon coherence through coherence conversion processes.Comment: 5 pages with 3 figures include

    Low Temperature metamagnetism and Hall effect anomaly in Kondo compound CeAgBi2

    Get PDF
    Heavy fermion (HF) materials exhibit a rich array of phenomena due to the strong Kondo coupling between their localized moments and itinerant electrons. A central question in their study is to understand the interplay between magnetic order and charge transport, and its role in stabilizing new quantum phases of matter. Particularly promising in this regard is a family of tetragonal intermetallic compounds Ce{TXTX}2_2 (T=T= transition metal, X=X= pnictogen), that includes a variety of HF compounds showing TT-linear electronic specific heat Ce∼γT\bf{C_e \sim \gamma T}, with γ∼\gamma\sim 20-500 mJ⋅\cdotmol−1^{-1}~K−2^{-2}, reflecting an effective mass enhancement ranging from small to modest. Here, we study the low-temperature field-tuned phase diagram of high-quality CeAgBi2_2 using magnetometry and transport measurements. We find an antiferromagnetic transition at TN=6.4{T_{N} = 6.4}~K with weak magnetic anisotropy and the easy axis along the cc-axis, similar to previous reports (TN=6.1{T_{N} = 6.1}~K). This scenario, along with the presence of two anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, leads to a rich field-tuned magnetic phase diagram, consisting of five metamagnetic transitions of both first and second order. In addition, we unveil an anomalous Hall contribution for fields H<54H<54 kOe which is drastically altered when HH is tuned through a trio of transitions at 57, 78, and 84~kOe, suggesting that the Fermi surface is reconstructed in a subset of the metamagnetic transitions.Comment: (*equal contribution

    Parametric survey of longitudinal prominence oscillation simulations

    Full text link
    It is found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. An extensive parameter survey results in a scaling law, showing that the period of the oscillation, which weakly depends on the length and height of the prominence, and the amplitude of the perturbations, scales with R/g⊙\sqrt{R/g_\odot}, where RR represents the curvature radius of the dip, and g⊙g_\odot is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes non-negligible for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Compared to heat conduction, the radiative cooling is the dominant factor leading to the damping. A scaling law for the damping timescale is derived, i.e., τ∼l1.63D0.66w−1.21v0−0.30\tau\sim l^{1.63} D^{0.66}w^{-1.21}v_{0}^{-0.30}, showing strong dependence on the prominence length ll, the geometry of the magnetic dip (characterized by the depth DD and the width ww), and the velocity perturbation amplitude v0v_0. The larger the amplitude, the faster the oscillation damps. It is also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.Comment: 17 PAGES, 8FIGURE

    Semantic Object Parsing with Graph LSTM

    Full text link
    By taking the semantic object parsing task as an exemplar application scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network, which is the generalization of LSTM from sequential data or multi-dimensional data to general graph-structured data. Particularly, instead of evenly and fixedly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each arbitrary-shaped superpixel as a semantically consistent node, and adaptively construct an undirected graph for each image, where the spatial relations of the superpixels are naturally used as edges. Constructed on such an adaptive graph topology, the Graph LSTM is more naturally aligned with the visual patterns in the image (e.g., object boundaries or appearance similarities) and provides a more economical information propagation route. Furthermore, for each optimization step over Graph LSTM, we propose to use a confidence-driven scheme to update the hidden and memory states of nodes progressively till all nodes are updated. In addition, for each node, the forgets gates are adaptively learned to capture different degrees of semantic correlation with neighboring nodes. Comprehensive evaluations on four diverse semantic object parsing datasets well demonstrate the significant superiority of our Graph LSTM over other state-of-the-art solutions.Comment: 18 page

    Electromechanical tuning of vertically-coupled photonic crystal nanobeams

    Get PDF
    We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.Comment: 11 pages, 4 figure

    Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells

    Get PDF
    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and the numerical result of the stationary spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic

    Spin-transfer torques in anti-ferromagnetic metals from first principles

    Full text link
    In spite of the absence of a macroscopic magnetic moment, an anti-ferromagnet is spin-polarized on an atomic scale. The electric current passing through a conducting anti-ferromagnet is polarized as well, leading to spin-transfer torques when the order parameter is textured, such as in anti-ferromagnetic non-collinear spin valves and domain walls. We report a first principles study on the electronic transport properties of anti-ferromagnetic systems. The current-induced spin torques acting on the magnetic moments are comparable with those in conventional ferromagnetic materials, leading to measurable angular resistances and current-induced magnetization dynamics. In contrast to ferromagnets, spin torques in anti-ferromagnets are very nonlocal. The torques acting far away from the center of an anti-ferromagnetic domain wall should facilitate current-induced domain wall motion.Comment: The paper has substantially been rewritten, 4 pages, 5 figure

    Investigation of the relation between local diffusivity and local inherent structures in the Kob-Andersen Lennard-Jones model

    Full text link
    We analyze one thousand independent equilibrium trajectories of a system of 155 Lennard Jones particles to separate in a model-free approach the role of temperature and the role of the explored potential energy landscape basin depth in the particle dynamics. We show that the diffusion coefficient DD can be estimated as a sum over over contributions of the sampled basins, establishing a connection between thermodynamics and dynamics in the potential energy landscape framework. We provide evidence that the observed non-linearity in the relation between local diffusion and basin depth is responsible for the peculiar dynamic behavior observed in supercooled states and provide an interpretation for the presence of dynamic heterogeneities.Comment: minor text changes, references adde
    • …
    corecore