30,137 research outputs found

    Observation of the Presuperfluid Regime in a Two-Dimensional Bose Gas

    Get PDF
    In complementary images of coordinate-space and momentum-space density in a trapped 2D Bose gas, we observe the emergence of pre-superfluid behavior. As phase-space density ρ\rho increases toward degenerate values, we observe a gradual divergence of the compressibility Îș\kappa from the value predicted by a bare-atom model, Îșba\kappa_{ba}. Îș/Îșba\kappa/\kappa_{ba} grows to 1.7 before ρ\rho reaches the value for which we observe the sudden emergence of a spike at p=0p=0 in momentum space. Momentum-space images are acquired by means of a 2D focusing technique. Our data represent the first observation of non-meanfield physics in the pre-superfluid but degenerate 2D Bose gas.Comment: Replace with the version appeared in PR

    The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies

    Full text link
    We study the properties of infrared-selected QSOs (IR QSOs), optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s). We compare their properties from the infrared to the optical and examine various correlations among the black hole mass, accretion rate, star formation rate and optical and infrared luminosities. We find that the infrared excess in IR QSOs is mostly in the far infrared, and their infrared spectral indices suggest that the excess emission is from low temperature dust heated by starbursts rather than AGNs. The infrared excess is therefore a useful criterion to separate the relative contributions of starbursts and AGNs. We further find a tight correlation between the star formation rate and the accretion rate of central AGNs for IR QSOs. The ratio of the star formation rate and the accretion rate is about several hundred for IR QSOs, but decreases with the central black hole mass. This shows that the tight correlation between the stellar mass and the central black hole mass is preserved in massive starbursts during violent mergers. We suggest that the higher Eddington ratios of NLS1s and IR QSOs imply that they are in the early stage of evolution toward classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap

    Fermi surface topology and low-lying quasiparticle structure of magnetically ordered Fe1+xTe

    Full text link
    We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the "X"-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.Comment: 5 pages, 4 Figures; Submitted to Phys. Rev. Lett. (2009

    77Se NMR study of pairing symmetry and spin dynamics in KyFe2-xSe2

    Full text link
    We present a 77Se NMR study of the newly discovered iron selenide superconductor KyFe2-xSe2, in which Tc = 32 K. Below Tc, the Knight shift 77K drops sharply with temperature, providing strong evidence for singlet pairing. Above Tc, Korringa-type relaxation indicates Fermi-liquid behavior. Our experimental results set strict constraints on the nature of possible theories for the mechanism of high-Tc superconductivity in this iron selenide system.Comment: Chemical composition of crystals determined. Accepted in Physical Review Letter

    Luminous Infrared Galaxies in the Local Universe

    Full text link
    We study the morphology and star formation properties of 159 local luminous infrared galaxy (LIRG) using multi-color images from Data Release 2 (DR2) of the Sloan Digital Sky Survey (SDSS). The LIRGs are selected from a cross-correlation analysis between the IRAS survey and SDSS. They are all brighter than 15.9 mag in the r-band and below redshift ~ 0.1, and so can be reliably classified morphologically. We find that the fractions of interacting/merging and spiral galaxies are ~ 48% and ~ 40% respectively. Our results complement and confirm the decline (increase) in the fraction of spiral (interacting/merging) galaxies from z ~1 to z ~ 0.1, as found by Melbourne, Koo & Le Floc'h (2005). About 75% of spiral galaxies in the local LIRGs are barred, indicating that bars may play an important role in triggering star formation rates > 20 M_{sun}/yr in the local universe. Compared with high redshift LIRGs, local LIRGs have lower specific star formation rates, smaller cold gas fractions and a narrower range of stellar masses. Local LIRGs appear to be either merging galaxies forming intermediate mass ellipticals or spiral galaxies undergoing high star formation activities regulated by bars.Comment: 22 pages, 5 figures, accepted for publication in ApJ, title changed, typos corrected,major revisions following referee's comments,updated reference

    Probing for cosmological parameters with LAMOST measurement

    Full text link
    In this paper we study the sensitivity of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project to the determination of cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method. For comparison, we first analyze the constraints on cosmological parameters from current observational data, including WMAP, SDSS and SN Ia. We then simulate the 3D matter power spectrum data expected from LAMOST, together with the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy Survey (SNLS). With the simulated data, we investigate the future improvement on cosmological parameter constraints, emphasizing the role of LAMOST. Our results show the potential of LAMOST in probing for the cosmological parameters, especially in constraining the equation-of-state (EoS) of the dark energy and the neutrino mass.Comment: 7 pages and 3 figures. Replaced with version accepted for publication in JCA

    Evolution models for mass transportation problems

    Full text link
    We present a survey on several mass transportation problems, in which a given mass dynamically moves from an initial configuration to a final one. The approach we consider is the one introduced by Benamou and Brenier in [5], where a suitable cost functional F(ρ,v)F(\rho,v), depending on the density ρ\rho and on the velocity vv (which fulfill the continuity equation), has to be minimized. Acting on the functional FF various forms of mass transportation problems can be modeled, as for instance those presenting congestion effects, occurring in traffic simulations and in crowd motions, or concentration effects, which give rise to branched structures.Comment: 16 pages, 14 figures; Milan J. Math., (2012
    • 

    corecore