30,137 research outputs found
Observation of the Presuperfluid Regime in a Two-Dimensional Bose Gas
In complementary images of coordinate-space and momentum-space density in a
trapped 2D Bose gas, we observe the emergence of pre-superfluid behavior. As
phase-space density increases toward degenerate values, we observe a
gradual divergence of the compressibility from the value predicted by
a bare-atom model, . grows to 1.7 before
reaches the value for which we observe the sudden emergence of a spike
at in momentum space. Momentum-space images are acquired by means of a 2D
focusing technique. Our data represent the first observation of non-meanfield
physics in the pre-superfluid but degenerate 2D Bose gas.Comment: Replace with the version appeared in PR
The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies
We study the properties of infrared-selected QSOs (IR QSOs),
optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s).
We compare their properties from the infrared to the optical and examine
various correlations among the black hole mass, accretion rate, star formation
rate and optical and infrared luminosities. We find that the infrared excess in
IR QSOs is mostly in the far infrared, and their infrared spectral indices
suggest that the excess emission is from low temperature dust heated by
starbursts rather than AGNs. The infrared excess is therefore a useful
criterion to separate the relative contributions of starbursts and AGNs. We
further find a tight correlation between the star formation rate and the
accretion rate of central AGNs for IR QSOs. The ratio of the star formation
rate and the accretion rate is about several hundred for IR QSOs, but decreases
with the central black hole mass. This shows that the tight correlation between
the stellar mass and the central black hole mass is preserved in massive
starbursts during violent mergers. We suggest that the higher Eddington ratios
of NLS1s and IR QSOs imply that they are in the early stage of evolution toward
classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap
Fermi surface topology and low-lying quasiparticle structure of magnetically ordered Fe1+xTe
We report the first photoemission study of Fe1+xTe - the host compound of the
newly discovered iron-chalcogenide superconductors. Our results reveal a pair
of nearly electron- hole compensated Fermi pockets, strong Fermi velocity
renormalization and an absence of a spin-density-wave gap. A shadow hole pocket
is observed at the "X"-point of the Brillouin zone which is consistent with a
long-range ordered magneto-structural groundstate. No signature of Fermi
surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our
results collectively reveal that the Fe1+xTe series is dramatically different
from the undoped phases of the high Tc pnictides and likely harbor unusual
mechanism for superconductivity and quantum magnetic order.Comment: 5 pages, 4 Figures; Submitted to Phys. Rev. Lett. (2009
77Se NMR study of pairing symmetry and spin dynamics in KyFe2-xSe2
We present a 77Se NMR study of the newly discovered iron selenide
superconductor KyFe2-xSe2, in which Tc = 32 K. Below Tc, the Knight shift 77K
drops sharply with temperature, providing strong evidence for singlet pairing.
Above Tc, Korringa-type relaxation indicates Fermi-liquid behavior. Our
experimental results set strict constraints on the nature of possible theories
for the mechanism of high-Tc superconductivity in this iron selenide system.Comment: Chemical composition of crystals determined. Accepted in Physical
Review Letter
Luminous Infrared Galaxies in the Local Universe
We study the morphology and star formation properties of 159 local luminous
infrared galaxy (LIRG) using multi-color images from Data Release 2 (DR2) of
the Sloan Digital Sky Survey (SDSS). The LIRGs are selected from a
cross-correlation analysis between the IRAS survey and SDSS. They are all
brighter than 15.9 mag in the r-band and below redshift ~ 0.1, and so can be
reliably classified morphologically. We find that the fractions of
interacting/merging and spiral galaxies are ~ 48% and ~ 40% respectively. Our
results complement and confirm the decline (increase) in the fraction of spiral
(interacting/merging) galaxies from z ~1 to z ~ 0.1, as found by Melbourne, Koo
& Le Floc'h (2005). About 75% of spiral galaxies in the local LIRGs are barred,
indicating that bars may play an important role in triggering star formation
rates > 20 M_{sun}/yr in the local universe. Compared with high redshift LIRGs,
local LIRGs have lower specific star formation rates, smaller cold gas
fractions and a narrower range of stellar masses. Local LIRGs appear to be
either merging galaxies forming intermediate mass ellipticals or spiral
galaxies undergoing high star formation activities regulated by bars.Comment: 22 pages, 5 figures, accepted for publication in ApJ, title changed,
typos corrected,major revisions following referee's comments,updated
reference
Probing for cosmological parameters with LAMOST measurement
In this paper we study the sensitivity of the Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST) project to the determination of
cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method.
For comparison, we first analyze the constraints on cosmological parameters
from current observational data, including WMAP, SDSS and SN Ia. We then
simulate the 3D matter power spectrum data expected from LAMOST, together with
the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy
Survey (SNLS). With the simulated data, we investigate the future improvement
on cosmological parameter constraints, emphasizing the role of LAMOST. Our
results show the potential of LAMOST in probing for the cosmological
parameters, especially in constraining the equation-of-state (EoS) of the dark
energy and the neutrino mass.Comment: 7 pages and 3 figures. Replaced with version accepted for publication
in JCA
Evolution models for mass transportation problems
We present a survey on several mass transportation problems, in which a given
mass dynamically moves from an initial configuration to a final one. The
approach we consider is the one introduced by Benamou and Brenier in [5], where
a suitable cost functional , depending on the density and on
the velocity (which fulfill the continuity equation), has to be minimized.
Acting on the functional various forms of mass transportation problems can
be modeled, as for instance those presenting congestion effects, occurring in
traffic simulations and in crowd motions, or concentration effects, which give
rise to branched structures.Comment: 16 pages, 14 figures; Milan J. Math., (2012
- âŠ