30,334 research outputs found

    Negative Cell Cycle Regulation and DNA Damage-inducible Phosphorylation of the BRCT Protein 53BP1

    Get PDF
    In a screen designed to discover suppressors of mitotic catastrophe, we identified the Xenopus ortholog of 53BP1 (X53BP1), a BRCT protein previously identified in humans through its ability to bind the p53 tumor suppressor. X53BP1 transcripts are highly expressed in ovaries, and the protein interacts with Xp53 throughout the cell cycle in embryonic extracts. However, no interaction between X53BP1 and Xp53 can be detected in somatic cells, suggesting that the association between the two proteins may be developmentally regulated. X53BP1 is modified via phosphorylation in a DNA damage-dependent manner that correlates with the dispersal of X53BP1 into multiple foci throughout the nucleus in somatic cells. Thus, X53BP1 can be classified as a novel participant in the DNA damage response pathway. We demonstrate that X53BP1 and its human ortholog can serve as good substrates in vitro as well as in vivo for the ATM kinase. Collectively, our results reveal that 53BP1 plays an important role in the checkpoint response to DNA damage, possibly in collaboration with ATM

    The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies

    Full text link
    We study the properties of infrared-selected QSOs (IR QSOs), optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s). We compare their properties from the infrared to the optical and examine various correlations among the black hole mass, accretion rate, star formation rate and optical and infrared luminosities. We find that the infrared excess in IR QSOs is mostly in the far infrared, and their infrared spectral indices suggest that the excess emission is from low temperature dust heated by starbursts rather than AGNs. The infrared excess is therefore a useful criterion to separate the relative contributions of starbursts and AGNs. We further find a tight correlation between the star formation rate and the accretion rate of central AGNs for IR QSOs. The ratio of the star formation rate and the accretion rate is about several hundred for IR QSOs, but decreases with the central black hole mass. This shows that the tight correlation between the stellar mass and the central black hole mass is preserved in massive starbursts during violent mergers. We suggest that the higher Eddington ratios of NLS1s and IR QSOs imply that they are in the early stage of evolution toward classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap

    An epep collider based on proton-driven plasma wakefield acceleration

    Get PDF
    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future epep collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an epep collider.Comment: 6 pages, 2 figures, to appear in the proceedings of the DIS 2014 Workshop, 28 April - 2 May, Warsaw, Polan

    Collider design issues based on proton-driven plasma wakefield acceleration

    Full text link
    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure

    Luminous Infrared Galaxies in the Local Universe

    Full text link
    We study the morphology and star formation properties of 159 local luminous infrared galaxy (LIRG) using multi-color images from Data Release 2 (DR2) of the Sloan Digital Sky Survey (SDSS). The LIRGs are selected from a cross-correlation analysis between the IRAS survey and SDSS. They are all brighter than 15.9 mag in the r-band and below redshift ~ 0.1, and so can be reliably classified morphologically. We find that the fractions of interacting/merging and spiral galaxies are ~ 48% and ~ 40% respectively. Our results complement and confirm the decline (increase) in the fraction of spiral (interacting/merging) galaxies from z ~1 to z ~ 0.1, as found by Melbourne, Koo & Le Floc'h (2005). About 75% of spiral galaxies in the local LIRGs are barred, indicating that bars may play an important role in triggering star formation rates > 20 M_{sun}/yr in the local universe. Compared with high redshift LIRGs, local LIRGs have lower specific star formation rates, smaller cold gas fractions and a narrower range of stellar masses. Local LIRGs appear to be either merging galaxies forming intermediate mass ellipticals or spiral galaxies undergoing high star formation activities regulated by bars.Comment: 22 pages, 5 figures, accepted for publication in ApJ, title changed, typos corrected,major revisions following referee's comments,updated reference

    Probing for cosmological parameters with LAMOST measurement

    Full text link
    In this paper we study the sensitivity of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project to the determination of cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method. For comparison, we first analyze the constraints on cosmological parameters from current observational data, including WMAP, SDSS and SN Ia. We then simulate the 3D matter power spectrum data expected from LAMOST, together with the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy Survey (SNLS). With the simulated data, we investigate the future improvement on cosmological parameter constraints, emphasizing the role of LAMOST. Our results show the potential of LAMOST in probing for the cosmological parameters, especially in constraining the equation-of-state (EoS) of the dark energy and the neutrino mass.Comment: 7 pages and 3 figures. Replaced with version accepted for publication in JCA

    Magneto-frictional Modeling Of Coronal Nonlinear Force-free Fields. I. Testing With Analytic Solutions

    Get PDF
    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov-Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax-Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper
    • …
    corecore