223 research outputs found

    Combination of cobalt, chromium and titanium nanoparticles increases cytotoxicity in vitro and pro-inflammatory cytokines in vivo

    Get PDF
    BackgroundThe mixture of different metallic nanoparticles released from intended and unintended wearing of orthopaedic implants such as the Co/Cr cup and head, Co/Cr sleeves or tapers and their interface with Ti stems in the case of hip prostheses are a leading cause of adverse inflammatory responses and cytotoxicity to the host.MethodsThis study assessed the in vitro cytotoxic effects of three metallic nanoparticles (Co, Cr and Ti) separately and in combination on macrophages. The in vivo effects were also evaluated after peri-tibial soft tissue injection in mice.ResultsThe results demonstrated that Co, Cr, and Ti nanoparticles and their combination were phagocytosed by macrophages both in vitro and in vivo. High doses of nanoparticles from each individual metal caused a variable rate of cell death in vitro. However, the mixture of Co/Cr/Ti nanoparticles was more toxic than the Co, Cr or Ti metals alone at low doses. Intracellular distribution of Co, Cr, and Ti in the combined group was heterogeneous and associated with distinct morphological features. The results from in vivo experiments showed a significant increase in the mRNA levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α in peri-tibial soft tissue following the administration of Co alone as well as the combination of nanoparticles.ConclusionThis study demonstrated that the combination of Co/Cr/Ti nanoparticles was more cytotoxic than any of the individual metals in vitro and induced higher expression of genes encoding pro-inflammatory cytokines than single metals in vivo. The in vivo model utilised in this study might provide a useful tool for rapid assessment of the effects of unintended release of metal nanoparticles from implants in pre-/post-marketing studies.Translational potential of this articleThis study highlights the importance of preclinical assessments of potential nanoparticles produced by wear and tear of metal implants using macrophages and animal models, in particular their combinational toxicity in addition to the assessments of the bulk metallic materials

    The effect of varying monocalcium phosphate and polylysine levels on dental composite properties

    Get PDF
    Objectives The aim was to quantify effects of polylysine (PLS, 2 or 5 wt%) and monocalcium phosphate (MCP, 4 or 8 wt%) on properties of dental composites. Methods Light-activated, lower surface polymerisation kinetics versus sample depth (1–4 mm) of 4 formulations were quantified using ATR-FTIR. Water sorption and solubility (at 1 week) were assessed following ISO/4049. PLS release (over 1 month) and biaxial flexural strength (over 6 months) of fully-cured, water-immersed, 1 mm thick discs were determined. Surface mineral precipitation, following immersion in simulated body fluid (SBF), was assessed by SEM. Z250 was used as a conventional composite comparator. Results With 40s light exposure, increasing depth (from 1 to 4 mm) led to enhanced delay before polymerisation (from 3 to 17s) and decreased final conversion (72-66%) irrespective of PLS and MCP level. Increasing PLS and MCP raised solubility (4–13 μg/mm3). Water sorption (between 32 and 55 μg/mm3) and final PLS release (8–13% of disc content) were raised primarily by increasing PLS. Higher PLS also reduced strength. Strength reached minimum values (69–94 MPa) at 3 months. Surface mineral deposition was enhanced by increased MCP. For Z250, polymerisation delays (3-6s) and final conversions (55-54%) at 1-4 mm depth, solubility (0 μg/mm3), water sorption (16 μg/mm3) and strength (180 MPa) were all significantly different. Conclusion Delay time increased whilst final conversion decreased with thicker samples. Higher PLS enhances its percentage release, but lower level is required to keep water sorption, solubility and mechanical properties within ISO 4049 recommendations. Doubling MCP raises solubility and enhances minerals reprecipitation with minimal mechanical property compromise

    Role of hypoxia inducible factor 1alpha in cobalt nanoparticle induced cytotoxicity of human THP-1 macrophages

    Get PDF
    Cobalt is one of the main components of metal hip prostheses and cobalt nanoparticles (CoNPs) produced from wear cause inflammation, bone lyses and cytotoxicity at high concentrations. Cobalt ions mimic hypoxia in the presence of normal oxygen levels, and activate hypoxic signalling by stabilising hypoxia inducible transcription factor 1α (HIF1α). This study aimed to assess in vitro the functional role of HIF1α in CoNP induced cellular cytotoxicity. HIF1α, lysosomal pH, tumour necrosis factor α and interleukin 1β expression were analysed in THP-1 macrophages treated with CoNP (0, 10 and 100 μg/mL). HIF1α knock out assays were performed using small interfering RNA to assess the role of HIF1α in CoNP-induced cytotoxicity. Increasing CoNP concentration increased lysosomal activity and acidity in THP-1 macrophages. Higher doses of CoNP significantly reduced cell viability, stimulated caspase 3 activity and apoptosis. Reducing HIF1α activity increased the pro-inflammatory activity of tumour necrosis factor α and interleukin 1β, but had no significant impact on cellular cytotoxicity. This suggests that whilst CoNP promotes cytotoxicity and cellular inflammation, the apoptotic mechanism is not dependent on HIF1α

    Renewal MI Dental Composite Etch and Seal Properties

    Get PDF
    This study's aim was to assess whether the Renewal MI composite can self-etch enamel, seal sound cavities, and stabilize demineralized dentine. Etching was assessed using scanning electron microscopy (SEM). Cavity sealing was quantified using the ISO-11405 dye microleakage test. Demineralized dentine stabilization was evaluated by visualizing resin tag formation, enzyme activity and mineral precipitation at the adhesion interface. Renewal MI provided a mild etching of sound enamel in comparison with 37% phosphoric acid. It provided a comparable seal of sound cavities to Z250/Scotchbond Universal adhesive and a superior seal to Activa, Fuji IX and Fuji II LC. With demineralized dentine, Renewal MI formed 300-400 µm resin tags covering 63% of the adhesion interface compared with 55 and 39% for Z250/Scotchbond and Activa. Fuji IX and Fuji II LC formed no resin tags. A higher tag percentage correlated with lower surface enzyme activity. Unlike Activa and Fuji II LC, Renewal MI promoted mineral precipitation from simulated body fluid, occluding adjacent dentinal tubules within 6 months. These novel etching and sealing properties may facilitate Renewal MI's application in minimally invasive dentistry

    In Situ Lithiation–Delithiation of Mechanically Robust Cu–Si Core–Shell Nanolattices in a Scanning Electron Microscope

    Get PDF
    Nanoarchitected Cu–Si core–shell lattices were fabricated via two-photon lithography and tested as mechanically robust Li-ion battery electrodes which accommodate ∼250% Si volume expansion during lithiation. The superior mechanical performance of the nanolattice electrodes is directly observed using an in situ scanning electron microscope, which allows volume expansion and morphological changes to be imaged at multiple length scales, from single lattice beam to the architecture level, during electrochemical testing. Finite element modeling of lithiation-induced volume expansion in a core–shell structure reveals that geometry and plasticity mechanisms play a critical role in preventing damage in the nanolattice electrodes. The two-photon lithography-based fabrication method combined with computational modeling and in situ characterization capabilities would potentially enable the rational design and fast discovery of mechanically robust and kinetically agile electrode materials that independently optimize geometry, feature size, porosity, surface area, and chemical composition, as well as other functional devices in which mechanical and transport phenomena are important

    Psip1/Ledgf p75 restrains<i>Hox</i>gene expression by recruiting both trithorax and polycomb group proteins

    Get PDF
    Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax familymember MLL (myeloid/lymphoid or mixedlineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins toHOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1-/- cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research

    A Cross-Scale Neutral Theory Approach to the Influence of Obesity on Community Assembly of Human Gut Microbiome

    Get PDF
    Background: The implications of gut microbiome to obesity have been extensively investigated in recent years although the exact mechanism is still unclear. The question whether or not obesity influences gut microbiome assembly has not been addressed. The question is significant because it is fundamental for investigating the diversity maintenance and stability of gut microbiome, and the latter should hold a key for understanding the etiological implications of gut microbiome to obesity.Methods: In this study, we adopt a dual neutral theory modeling strategy to address this question from both species and community perspectives, with both discrete and continuous neutral theory models. The first neutral theory model we apply is Hubbell's neutral theory of biodiversity that has been extensively tested in macro-ecology of plants and animals, and the second we apply is Sloan's neutral theory model that was developed particularly for microbial communities based on metagenomic sequencing data. Both the neutral models are complementary to each other and integrated together offering a comprehensive approach to more accurately revealing the possible influence of obesity on gut microbiome assembly. This is not only because the focus of both neutral theory models is different (community vs. species), but also because they adopted two different modeling strategies (discrete vs. continuous).Results: We test both the neutral theory models with datasets from Turnbaugh et al. (2009). Our tests showed that the species abundance distributions of more than ½ species (59–69%) in gut microbiome satisfied the prediction of Sloan's neutral theory, although at the community level, the number of communities satisfied the Hubbell's neutral theory was negligible (2 out of 278).Conclusion: The apparently contradictory findings above suggest that both stochastic neutral effects and deterministic environmental (host) factors play important roles in shaping the assembly and diversity of gut microbiome. Furthermore, obesity may just be one of the host factors, but its influence may not be strong enough to tip the balance between stochastic and deterministic forces that shape the community assembly. Finally, the apparent contradiction from both the neutral theories should not be surprising given that there are still near 30–40% species that do not obey the neutral law

    Oedema extension distance in intracerebral haemorrhage: Association with baseline characteristics and long-term outcome

    Get PDF
    Introduction: Oedema extension distance is a derived parameter that may reduce sample size requirements to demonstrate reduction in perihaematomal oedema in early phase acute intracerebral haemorrhage trials. We aimed to identify baseline predictors of oedema extension distance and its association with clinical outcomes. Patients and methods: Using Virtual International Stroke Trials Archive-Intracerebral Haemorrhage, first Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial, and Minimally Invasive Surgery and rtPA for Intracerebral Hemorrhage Evacuation II datasets, we calculated oedema extension distance at baseline and at 72 h measured using computed tomography. Using linear regression, we tested for associations between baseline characteristics and oedema extension distance at 72 h. Ordinal regression (underlying assumptions validated) was used to test for associations between oedema extension distance at baseline and 72 h and oedema extension distance change between baseline and 72 h, and modified Rankin scale scores at 90 days, adjusted for baseline and 72 h prognostic factors. Results: There were 1028 intracerebral haemorrhage cases with outcome data for analyses. Mean (standard deviation, SD) oedema extension distance at 72 h was 0.54 (0.26) cm, and mean oedema extension distance difference from baseline (EED72–0) was 0.24 (0.18) cm. Oedema extension distance at 72 h was greater with increasing baseline haematoma volume and baseline oedema extension distance. Increasing age, lobar haemorrhage, and intraventricular haemorrhage were independently associated with EED72–0. In multifactorial ordinal regression analysis, EED72–0 was associated with worse modified Rankin scale scores at 90 days (odds ratio 1.96, 95% confidence interval 1.00–3.82). Discussion: Increase in oedema extension distance over 72 h is independently associated with decreasing functional outcome at 90 days. Oedema extension distance may be a useful surrogate outcome measure in early phase trials of anti-oedema or anti-inflammatory treatments in intracerebral haemorrhage

    The prevalence of and factors associated with prior induced abortion among women who gave birth in Victoria, 2010-2019

    Get PDF
    OBJECTIVE: To assess the prevalence of a history of induced abortion among women who gave birth in Victoria during 2010-2019; to assess the association of socio-demographic factors with a history of induced abortion. STUDY DESIGN: Retrospective cohort study; analysis of cross-sectional perinatal data in the Victorian Perinatal Data Collection (VPDC). SETTING, PARTICIPANTS: All women who gave birth (live or stillborn) in Victoria, 1 January 2010 - 31 December 2019. MAIN OUTCOME MEASURES: Self-reported induced abortions prior to the index birth; outcome of the most recent pregnancy preceding the index pregnancy. RESULTS: Of the 766 488 women who gave birth during 2010-2019, 93 251 reported induced abortions (12.2%), including 36 938 of 338 547 nulliparous women (10.9%). Women living in inner regional (adjusted odds ratio [aOR], 0.94; 95% confidence interval [CI], 0.93-0.96) or outer regional/remote/very remote areas (aOR, 0.86; 95% CI, 0.83-0.89) were less likely than women in major cities to report induced abortions. The likelihood increased steadily with age at the index birth and with parity, and was also higher for women without partners at the index birth (aOR, 2.20; 95% CI, 2.16-2.25) and Aboriginal and Torres Strait Islander women (aOR, 1.32; 95% CI, 1.25-1.40). The likelihood was lower for women born in most areas outside Australia than for those born in Australia. The likelihood of a history of induced abortion declined across the study period overall (2019 v 2010: 0.93; 95% CI, 0.90-0.96) and for women in major cities (0.88; 95% CI, 0.84-0.91); rises in inner regional and outer regional/remote/very remote areas were not statistically significant. CONCLUSIONS: Access to abortion care in Victoria improved during 2010-2019, but the complex interplay between contraceptive use, unintended pregnancy, and induced abortion requires further exploration by remoteness of residence. Robust information about numbers of unintended pregnancies and access to reproductive health services are needed to guide national sexual and reproductive health policy and practice
    • …
    corecore