28 research outputs found

    漢方薬とその有効成分の肝細胞がんに対する抑制効果及び化学療法併用によるシナジー効果

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 瀬戸 泰之, 東京大学准教授 阪本 良弘, 東京大学教授 鈴木 洋史, 東京大学准教授 野澤 宏彰, 東京大学講師 立石 敬介University of Tokyo(東京大学

    Consensus Rules in Variant Detection from Next-Generation Sequencing Data

    Get PDF
    A critical step in detecting variants from next-generation sequencing data is post hoc filtering of putative variants called or predicted by computational tools. Here, we highlight four critical parameters that could enhance the accuracy of called single nucleotide variants and insertions/deletions: quality and deepness, refinement and improvement of initial mapping, allele/strand balance, and examination of spurious genes. Use of these sequence features appropriately in variant filtering could greatly improve validation rates, thereby saving time and costs in next-generation sequencing projects

    More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars

    Get PDF
    The role of biochar–microbe interaction in plant rhizosphere mediating soilborne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng ( Panax ginseng C. A. Meyer) is widely cultivated in Alfisols across Northeast China, being often stressed severely by pathogenic diseases. In this study, the topsoil of a continuously cropped ginseng farm was amended at 20 t ha − 1, respectively, with manure biochar (PB), wood biochar (WB), and maize residue biochar (MB) in comparison to conventional manure compost (MC). Post-amendment changes in edaphic properties of bulk topsoil and the rhizosphere, in root growth and quality, and disease incidence were examined with field observations and physicochemical, molecular, and biochemical assays. In the 3 years following the amendment, the increases over MC in root biomass were parallel to the overall fertility improvement, being greater with MB and WB than with PB. Differently, the survival rate of ginseng plants increased insignificantly with PB but significantly with WB (14%) and MB (21%), while ginseng root quality was unchanged with WB but improved with PB (32%) and MB (56%). For the rhizosphere at harvest following 3 years of growing, the total content of phenolic acids from root exudate decreased by 56, 35, and 45% with PB, WB, and MB, respectively, over MC. For the rhizosphere microbiome, total fungal and bacterial abundance both was unchanged under WB but significantly increased under MB (by 200 and 38%), respectively, over MC. At the phyla level, abundances of arbuscular mycorrhizal and Bryobacter as potentially beneficial microbes were elevated while those of Fusarium and Ilyonectria as potentially pathogenic microbes were reduced, with WB and MB over MC. Moreover, rhizosphere fungal network complexity was enhanced insignificantly under PB but significantly under WB moderately and MB greatly, over MC. Overall, maize biochar exerted a great impact rather on rhizosphere microbial community composition and networking of functional groups, particularly fungi, and thus plant defense than on soil fertility and root growth

    More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars

    Get PDF
    The role of biochar–microbe interaction in plant rhizosphere mediating soil-borne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng (Panax ginseng C. A. Meyer) is widely cultivated in Alfisols across Northeast China, being often stressed severely by pathogenic diseases. In this study, the topsoil of a continuously cropped ginseng farm was amended at 20 t ha–1, respectively, with manure biochar (PB), wood biochar (WB), and maize residue biochar (MB) in comparison to conventional manure compost (MC). Post-amendment changes in edaphic properties of bulk topsoil and the rhizosphere, in root growth and quality, and disease incidence were examined with field observations and physicochemical, molecular, and biochemical assays. In the 3 years following the amendment, the increases over MC in root biomass were parallel to the overall fertility improvement, being greater with MB and WB than with PB. Differently, the survival rate of ginseng plants increased insignificantly with PB but significantly with WB (14%) and MB (21%), while ginseng root quality was unchanged with WB but improved with PB (32%) and MB (56%). For the rhizosphere at harvest following 3 years of growing, the total content of phenolic acids from root exudate decreased by 56, 35, and 45% with PB, WB, and MB, respectively, over MC. For the rhizosphere microbiome, total fungal and bacterial abundance both was unchanged under WB but significantly increased under MB (by 200 and 38%), respectively, over MC. At the phyla level, abundances of arbuscular mycorrhizal and Bryobacter as potentially beneficial microbes were elevated while those of Fusarium and Ilyonectria as potentially pathogenic microbes were reduced, with WB and MB over MC. Moreover, rhizosphere fungal network complexity was enhanced insignificantly under PB but significantly under WB moderately and MB greatly, over MC. Overall, maize biochar exerted a great impact rather on rhizosphere microbial community composition and networking of functional groups, particularly fungi, and thus plant defense than on soil fertility and root growth

    Whole exome sequencing identifies frequent somatic mutations in cell-cell adhesion genes in chinese patients with lung squamous cell carcinoma

    Get PDF
    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy

    Improved Battery Parameter Estimation Method Considering Operating Scenarios for HEV/EV Applications

    No full text
    This paper presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method

    MiR-124 Suppresses Growth of Human Colorectal Cancer by Inhibiting STAT3

    Get PDF
    Emerging evidence indicate that microRNAs (miRNAs) may play important roles in cancer. Aberrant expression of miRNAs has been frequently identified in different human malignancies, including colorectal cancer (CRC). However, the mechanism by which deregulated miRNAs impact the development of CRC remains largely elusive. In this study, we show that miR-124 is significantly down-regulated in CRC compared to adjacent non-tumor colorectal tissues. MiR-124 suppresses the expression of STAT3 by directly binding to its 3'-untranslated region (3'-UTR). Overexpression of miR-124 led to increased apoptosis of CRC cells and reduced tumor growth in vitro and in vivo. Knocking down STAT3 expression by specific siRNA suppressed the growth of CRC cells in vitro and in vivo, resembling that of miR-124 overexpression. Moreover, overexpression of STAT3 in miR-124-transfected CRC cells effectively rescued the inhibition of cell proliferation caused by miR-124. These data suggest that miR-124 serves as a tumor suppressor by targeting STAT3, and call for the use of miR-124 as a potential therapeutic tool for CRC, where STAT3 is often hyper-activated

    Genome-Wide Analysis of miRNA Signature Differentially Expressed in Doxorubicin-Resistant and Parental Human Hepatocellular Carcinoma Cell Lines

    Get PDF
    Chemotherapy regiments have been widely used in the treatment of a variety of human malignancies including hepatocellular carcinoma (HCC). A major cause of failure in chemotherapy is drug resistance of cancer cells. Resistance to doxorubicin (DOX) is a common and representative obstacle to treat cancer effectively. Individual microRNA (miRNA) has been introduced in the evolution of DOX resistance in HCC in recent studies. However, a global and systematic assessment of the miRNA expression profiles contributing to DOX resistance is still lacking. In the present study, we applied high-throughput Illumina sequencing to comprehensively characterize miRNA expression profiles in both human HCC cell line (HepG2) and its DOX-resistant counterpart (HepG2/DOX). A total of 269 known miRNAs were significantly differentially expressed, of which 23 were up-regulated and 246 were down-regulated in HepG2/DOX cells, indicating that part of them might be involved in the development of DOX resistance. In addition, we have identified 9 and 13 novel miRNAs up- and down-expressed significantly in HepG2/DOX cells, respectively. miRNA profiling was then validated by quantitative real-time PCR for selected miRNAs, including 22 known miRNAs and 6 novel miRNAs. Furthermore, we predicted the putative target genes for the deregulated miRNAs in the samples. Function annotation implied that these selected miRNAs affected many target genes mainly involved in MAPK signaling pathway. This study provides us a general description of miRNA expression profiling, which is helpful to find potential miRNAs for adjunct treatment to overcome DOX resistance in future HCC chemotherapy

    Detection of spurious genes.

    No full text
    <p><i>RPE:</i> the number of Reads Per Exon after adjusting the length of the exon and the overall sequencing depth per sample. <i>P<sub>HQR</sub></i>: the Proportion of High-Quality Reads for each exon. Each point represents an exon. The grey points represent all the exons in one sample. The red points indicate the distribution of the 13<sup>th</sup> exon of the gene <i>CDC27</i> in all 36 samples, and purple points indicate the distribution of the 42<sup>nd</sup> exon of the gene <i>MLL3</i> in all 36 samples, both of which are representative spurious genes and failed to be validated by experiments. The vertical dash line is set <i>RPE</i>  = 1.5 and the horizontal dash line is set <i>P<sub>HQR</sub></i>  = 0.4.</p
    corecore