636 research outputs found

    Conspecific Crop-Weed Introgression Influences Evolution of Weedy Rice (Oryza sativa f. spontanea) across a Geographical Range

    Get PDF
    Introgression plays an important role in evolution of plant species via its influences on genetic diversity and differentiation. Outcrossing determines the level of introgression but little is known about the relationships of outcrossing rates, genetic diversity, and differentiation particularly in a weedy taxon that coexists with its conspecific crop.Eleven weedy rice (Oryza sativa f. spontanea) populations from China were analyzed using microsatellite (SSR) fingerprints to study outcrossing rate and its relationship with genetic variability and differentiation. To estimate outcrossing, six highly polymorphic SSR loci were used to analyze >5500 progeny from 216 weedy rice families, applying a mixed mating model; to estimate genetic diversity and differentiation, 22 SSR loci were analyzed based on 301 weedy individuals. Additionally, four weed-crop shared SSR loci were used to estimate the influence of introgression from rice cultivars on weedy rice differentiation. Outcrossing rates varied significantly (0.4~11.7%) among weedy rice populations showing relatively high overall Nei's genetic diversity (0.635). The observed heterozygosity was significantly correlated with outcrossing rates among populations (rΒ² β€Š= β€Š0.783; P<0.001) although no obvious correlation between outcrossing rates and genetic diversity parameters was observed. Allelic introgression from rice cultivars to their coexisting weedy rice was detected. Weedy rice populations demonstrated considerable genetic differentiation that was correlated with their spatial distribution (rΒ²β€Š = β€Š0.734; P<0.001), and possibly also influenced by the introgression from rice cultivars.Outcrossing rates can significantly affect heterozygosity of populations, which may shape the evolutionary potential of weedy rice. Introgression from the conspecific crop rice can influence the genetic differentiation and possibly evolution of its coexisting weedy rice populations

    LXL: LiDAR Excluded Lean 3D Object Detection with 4D Imaging Radar and Camera Fusion

    Full text link
    As an emerging technology and a relatively affordable device, the 4D imaging radar has already been confirmed effective in performing 3D object detection in autonomous driving. Nevertheless, the sparsity and noisiness of 4D radar point clouds hinder further performance improvement, and in-depth studies about its fusion with other modalities are lacking. On the other hand, most of the camera-based perception methods transform the extracted image perspective view features into the bird's-eye view geometrically via "depth-based splatting" proposed in Lift-Splat-Shoot (LSS), and some researchers exploit other modals such as LiDARs or ordinary automotive radars for enhancement. Recently, a few works have applied the "sampling" strategy for image view transformation, showing that it outperforms "splatting" even without image depth prediction. However, the potential of "sampling" is not fully unleashed. In this paper, we investigate the "sampling" view transformation strategy on the camera and 4D imaging radar fusion-based 3D object detection. In the proposed model, LXL, predicted image depth distribution maps and radar 3D occupancy grids are utilized to aid image view transformation, called "radar occupancy-assisted depth-based sampling". Experiments on VoD and TJ4DRadSet datasets show that the proposed method outperforms existing 3D object detection methods by a significant margin without bells and whistles. Ablation studies demonstrate that our method performs the best among different enhancement settings

    A STUDY ON THE INHIBITORY EFFECT OF POLYSACCHARIDES FROM RADIX RANUNCULUS TERNATI ON HUMAN BREAST CANCER MCF-7 CELL LINES

    Get PDF
    The objective of this paper was to study the in vitro anti-breast cancer activity of polysaccharides from Radix ranunculus ternati. Different concentrations of polysaccharide extracts were selected, and MTT assay and flow cytometry (FCM) were used to investigate their growth-inhibitory and apoptosis-inducing effects on human breast cancer MCF-7 cell lines. Radix ranunculus ternati polysaccharides had varying degrees of effects on the growth of human breast cancer MCF-7 cell lines, and the differences were significant compared with the blank control group. FCM showed that the polysaccharides can induce apoptosis. In addition, it can also enhance NK cell activity. Radix ranunculus ternati polysaccharides have a relatively good in vitro anti-breast cancer activity

    Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway

    Get PDF
    Background: Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs. Methodology/Principal Findings: In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66. Conclusions/Significance: These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discover

    Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea

    Get PDF
    Background Galanthamine, one kind of Amaryllidaceae alkaloid extracted from the Lycoris species, is used in the treatment of Alzheimer’s disease. In regards to medical and economic importance, the biosynthesis and regulatory mechanism of the secondary metabolites in Lycoris remain uninvestigated. Methods BLAST was used to identify the sequence of tyrosine decarboxylase in the transcriptome of Lycoris aurea (L’HΓ©r) Herb. The enzyme activity of this TYDC was determined by using heterologous expressed protein in the Escherichia coli cells. The related productive contents of tyramine were detected using High Performance Liquid Chromatography (HPLC). According to the available micro RNA sequencing profiles and degradome database of L. aurea, microRNA396 were isolated, which targets to LaTYDC1 and RNA Ligase-Mediated-Rapid Amplification of cDNA Ends (RLM-RACE) were used to confirm the cleavage. The expression levels of miR396 and LaTYDC1 were measured using a quantitative real-time polymerase chain reaction (qRT-PCR). Results LaTYDC1 was mainly expressed in root, bulb, leaf and flower fitting the models for galanthamine accumulation. This decarboxylase efficiently catalyzes tyrosine to tyramine conversion. Under methyl jasmonate (MeJA) treatment, the expression of LaTYDC1 and the content of tyramine sharply increase. The use of RLM-RACE confirms that miR396 promotes the degradation of LaTYDC1 mRNA. Under MeJA treatment, the expression of miR396 was suppressed while the expression level of LaTYDC1 sharply increased. Following the increase of the miR396 transcriptional level, LaTYDC1 was significantly repressed. Conclusion LaTYDC1 participates in the biosynthesis of galanthamine, and is regulated by miR396. This finding also provides genetic strategy for improving the yield of galanthamine in the future

    Diagnosis and prognostic value of circDLGAP4 in acute ischemic stroke and its correlation with outcomes

    Get PDF
    Rationale and aimsCircular RNAs are a subclass of noncoding RNAs in mammalian cells and highly expressed in the central nervous system. Although their physiological functions are not yet completely defined, they are thought to promise as stroke biomarkers because of their stability in peripheral blood.Sample Size Estimate: 222 participants.Methods and designThe plasma of patients with acute ischemic stroke (AIS) (n = 111) and non-stroke controls (n = 111) from November 2017 to February 2019 were enrolled in our research. The expression of circDLGAP4 in plasma was evaluated using real-time PCR.Study outcomesIn patients with AIS, circDLGAP4 was significantly decreased in comparison with non-stroke controls. The CircDLGAP4 level had a significant AUC of 0.7896 with 91.72% sensitivity and 64.83% specificity in diagnosing AIS. Furthermore, the circDLGAP4 level was related to smoking history and previous transient ischemic attack/stroke/myocardial infarction in all samples. The change rate in circDLGAP4 within the first 7 days showed an AUC curve of 0.960 in predicting an stroke outcome.ConclusioncircDLGAP4 could serve as biomarker for AIS diagnosis and prediction of stroke outcomes

    A Novel W-Band Dual-Polarized Cassegrain Antenna for Cloud Radar

    Get PDF
    Abstract-A W-band dual-polarized Cassegrain antenna for cloud radar is proposed. The aperture diameter of the main reflector of the antenna is 50 cm. By using a modified Magic-T structure in the feed horn, the antenna is dual-polarized with high port isolation. The measured results show that the port isolation is 44.7 dB. The gains are 47.3 dB and 49.5 dB for the two ports at 94 GHz, respectively, and the efficiency of the antenna is better than 87%

    Enhanced biphasic reactions in amphiphilic silica mesopores

    Get PDF
    In this study, we investigated the effect of the pore volume and mesopore size of surface-active catalytic organosilicas on the genesis of particle-stabilized (Pickering) emulsions for the dodecanal/ethylene glycol system and their reactivity for the acid-catalyzed biphasic acetalization reaction. To this aim, we functionalized a series of fumed silica superparticles (size 100–300 nm) displaying an average mesopore size in the range of 11–14 nm and variable mesopore volume, with a similar surface density of octyl and propylsulfonic acid groups. The modified silica superparticles were characterized in detail using different techniques, including acid–base titration, thermogravimetric analysis, TEM, and dynamic light scattering. The pore volume of the particles impacts their self-assembly and coverage at the dodecanal/ethylene glycol (DA/EG) interface. This affects the stability and the average droplet size of emulsions and conditions of the available interfacial surface area for reaction. The maximum DA-EG productivity is observed for A200 super-SiNPs with a pore volume of 0.39 cm3Β·g–1 with an interfacial coverage by particles lower than 1 (i.e., submonolayer). Using dissipative particle dynamics and all-atom grand canonical Monte Carlo simulations, we unveil a stabilizing role of the pore volume of porous silica superparticles for generating emulsions and local micromixing of immiscible dodecanal and ethylene glycol, allowing fast and efficient solvent-free acetalization in the presence of Pickering emulsions. The micromixing level is interrelated to the adsorption energy of self-assembled particles at the DA/EG interface
    • …
    corecore