1,279 research outputs found

    A parthenogenetic maternal and double paternal contribution to an ovotesticular disorder of sex development

    Get PDF
    BACKGROUND: An ovotesticular disorder of sex development (OT-DSD) was rarely found in human. The mechanism causing such condition is poorly understood. We hereby reported a 11-year-old child with OT-DSD and a karyotype 46,XX/46,XY, a single maternal and double paternal genetic contribution to the patient. RESULTS: Fluorescence in situ hybridization (FISH), blood grouping, HLA (human leukocyte antigen) haplotyping and a genome-wide scanning of lymphocytes with 398 short tandem repeat microsatellite markers were performed to investigate the origin of the cell lines concerned. ABO typing revealed that two populations of red cells were in the patient, which were group A and group B, both from paternal alleles. HLA haplotyping showed the patient had three haplotypes. Haplotype 1 was inherited from maternity, haplotype 2 and 3 were from paternity. The STR microsatellite analysis showed 25 of the 74 fully informative markers in both parents, three alleles were inherited: one of them was from mother, another two were from father. Seventeen of the thirty-eight paternal markers, the patient inherited two paternal alleles. For 121 informative maternal markers, the patient had a single maternal allele. There were two distinct alleles in locus DXS6810 and DXS1073 on X-chromosome, in which one was from the mother and the other from the father. CONCLUSIONS: The patient was a single maternal and double paternal genetic, which was a type of a parthenogenetic division of a maternal haploid nucleus into two identical nuclei, followed by fertilization by two spermatozoa and fusion of the two zygotes into a single individual at the early embryonic stage. To the best of our knowledge, this is the oldest OT-DSD case of parthenogenetic chimerism. These data provide additional evidence that a parthenogenetic maternal and double paternal contribution causes 46,XX/46,XY OT-DSD

    Global Transcriptome Changes of Biofilm-Forming Staphylococcus epidermidis Responding to Total Alkaloids of Sophorea alopecuroides

    Get PDF
    Transcriptome changes of biofilm-forming Staphylococcus epidermidis response to total alkaloids of Sophorea alopecuroides was observed. Bioinformatic analyses were further used to compare the differential gene expression between control and the treated samples. It was found that 282 genes were differentially expressed, with 92 up-regulated and 190 down-regulated. These involved down-regulation of the sulfur metabolism pathway. It was suggested that inhibitory effects on Staphylococcus epidermidis and its biofilm formation of the total alkaloids of S. alopecuroides was mainly due to the regulation of the sulfur metabolism pathways of S. epidermidis

    Identification and Nearly Full-Length Genome Characterization of Novel Porcine Bocaviruses

    Get PDF
    The genus bocavirus includes bovine parvovirus (BPV), minute virus of canines (MVC), and a group of human bocaviruses (HBoV1-4). Using sequence-independent single primer amplification (SISPA), a novel bocavirus group was discovered with high prevalence (12.59%) in piglet stool samples. Two nearly full-length genome sequences were obtained, which were approximately 5,100 nucleotides in length. Multiple alignments revealed that they share 28.7–56.8% DNA sequence identity with other members of Parvovirinae. Phylogenetic analyses indicated their closest neighbors were members of the genus bocavirus. The new viruses had a putative non-structural NP1 protein, which was unique to bocaviruses. They were provisionally named porcine bocavirus 1 and 2 (PBoV1, PBoV2). PBoV1 and PBoV2 shared 94.2% nucleotide identity in NS1 gene sequence, suggesting that they represented two different bocavirus species. Two additional samples (6V, 7V) were amplified for 2,407 bp and 2,434 bp products, respectively, including a partial NP1 gene and the complete VP1 gene; Phylogenetic analysis indicated that 6Vand 7V grouped with PBoV1 and PBoV2 in the genus of bocavirus, but were in the separate clusters. Like other parvoviruses, PBoV1, PBoV2, 6Vand 7V also contained a putative secretory phospholipase A2 (sPLA2) motif in the VP1 unique region, with a conserved HDXXY motif in the catalytic center. The conserved motif YXGXF of the Ca2+-binding loop of sPLA2 identified in human bocavirus was also found in porcine bocavirus, which differs from the YXGXG motif carried by most other parvoviruses. The observation of PBoV and potentially other new bocavirus genus members may aid in molecular and functional characterization of the genus bocavirus

    Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury

    Get PDF
    INTRODUCTION: The primary aim of this study was to determine whether hypophosphatemia during continuous veno-venous hemofiltration (CVVH) is associated with the global outcome of critically ill patients with acute kidney injury (AKI). METHODS: 760 patients diagnosed with AKI and had received CVVH therapy were retrospectively recruited. Death during the 28-day period and survival at 28 days after initiation of CVVH were used as endpoints. Demographic and clinical data including serum phosphorus levels were recorded along with clinical outcome. Hypophosphatemia was defined according to the colorimetric method as serum phosphorus levels < 0.81 mmol/L (2.5 mg/dL), and severe hypophosphatemia was defined as serum phosphorus levels < 0.32 mmol/L (1 mg/dL). The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was calculated to reflect the persistence of hypophosphatemia. RESULTS: The Cox proportional hazard survival model analysis indicated that the incidence of hypophosphatemia or even severe hypophosphatemia was not associated with 28-day mortality independently (p = 0.700). Further analysis with the sub-cohort of patients who had developed hypophosphatemia during the CVVH therapy period indicated that the mean ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was 0.58, and the ratio independently associated with the global outcome. Compared with the patients with low ratio (< 0.58), those with high ratio (≥ 0.58) conferred a 1.451-fold increase in 28-day mortality rate (95% CI 1.103–1.910, p = 0.008). CONCLUSIONS: Hypophosphatemia during CVVH associated with the global clinical outcome of critically ill patients with AKI. The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was independently associated with the 28-day mortality, and high ratio conferred higher mortality rate

    Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo

    Get PDF
    INTRODUCTION: Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. METHOD: A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. RESULTS: Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. CONCLUSION: c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer

    Policosanol Attenuates Statin-Induced Increases in Serum Proprotein Convertase Subtilisin/Kexin Type 9 When Combined with Atorvastatin

    Get PDF
    Objective. Statin treatment alone has been demonstrated to significantly increase plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels. The effect of policosanol combined with statin on PCSK9 is unknown. Methods. Protocol I: 26 patients with atherosclerosis were randomly assigned to receive either atorvastatin 20 mg/d or policosanol 20 mg/d + atorvastatin 20 mg/d for 8 weeks. Protocol II: 15 healthy volunteers were randomly assigned to either policosanol 20 mg/d or a control group for 12 weeks. Serum levels of PCSK9 were determined at day 0 and the end of each protocol. Results. Protocol I: atorvastatin 20 mg/d significantly increased serum PCSK9 level by 39.4% (256 ± 84 ng/mL versus 357 ± 101 ng/mL, P=0.002). However, policosanol 20 mg/d + atorvastatin 20 mg/d increased serum PCSK9 level by only 17.4% without statistical significance (264 ± 60 ng/mL versus 310 ± 86 ng/mL, P=0.184). Protocol II: there was a trend toward decreasing serum PCSK9 levels in the policosanol group (289 ± 71 ng/mL versus 235 ± 46 ng/mL, P=0.069). Conclusion. Policosanol combined with statin attenuated the statin-induced increase in serum PCSK9 levels. This finding indicates that policosanol might have a modest effect of lowering serum PCSK9 levels

    Glucocorticoid Receptor β Acts As a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation

    Get PDF
    We previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas

    Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers

    Get PDF
    It is hard to find new electrochemiluminescence (ECL) luminophores using existing research strategies, especially from ECL non-active monomers. Here, fully conjugated covalent organic frameworks with trithiophene (BTT-COFs) are found to have ultra-high ECL efficiencies (up to 62.2%), even in water and without exogenous co-reactants. Quantum chemistry calculations confirm that the periodic BTT-COFs arrays promote intramolecular electron transfer generating ECL from non-ECL monomers. Modulation of ECL performance is possible by substituting the monomers for those with different electron-withdrawing properties. In addition, the cyano group weaved in the skeleton provides the dense sites for post-functionalization. As a typical use case, a highly selective ECL probe for uranyl ions is reported. The tunable ECL luminophore family possesses a broader development space than the traditional emitters, demonstrates the prospects of ECL-COFs, and affords an idea for detecting various contaminants through the rational design of target ligands.National Natural Science Foundation of Chin
    • …
    corecore