42 research outputs found

    Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine

    Get PDF
    Species in the ascomycete fungal genus Cordyceps have been proposed to be the teleomorphs of Metarhizium species. The latter have been widely used as insect biocontrol agents. Cordyceps species are highly prized for use in traditional Chinese medicines, but the genes responsible for biosynthesis of bioactive components, insect pathogenicity and the control of sexuality and fruiting have not been determined. Here, we report the genome sequence of the type species Cordyceps militaris. Phylogenomic analysis suggests that different species in the Cordyceps/Metarhizium genera have evolved into insect pathogens independently of each other, and that their similar large secretomes and gene family expansions are due to convergent evolution. However, relative to other fungi, including Metarhizium spp., many protein families are reduced in C. militaris, which suggests a more restricted ecology. Consistent with its long track record of safe usage as a medicine, the Cordyceps genome does not contain genes for known human mycotoxins. We establish that C. militaris is sexually heterothallic but, very unusually, fruiting can occur without an opposite mating-type partner. Transcriptional profiling indicates that fruiting involves induction of the Zn2Cys6-type transcription factors and MAPK pathway; unlike other fungi, however, the PKA pathway is not activated.https://doi.org/10.1186/gb-2011-12-11-r11

    A Switched-Coupling-Capacitor Equalizer for Series-Connected Battery Strings

    No full text

    Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth

    No full text
    Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2-xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals

    Core–shell nanoheterodimers: laser-assisted deposition of single bimetallic Au@M (M = Au, Ag, Pd, Pt) nanodots on TiO<sub>2</sub> nanoparticles

    No full text
    We propose to synthesize well-controlled core-shell nanoheterodimers (NHDs) based on single bimetallic Au@M (M = Au, Ag, Pd, Pt) nanodots (BNDs) grown on bare TiO 2 nanoparticles (NPs) by a two-step laser-assisted deposition. The high photon flux emitted by a focused UV laser triggers nucleation and growth of a single core nanodot (ND) and its size is quantitatively controlled by varying the time exposure and the concentration of gold ions in the solution in the first step. A second laser deposition is performed after adding a new metal precursor to the Au-TiO 2 NHDs thus prepared. Due to the vectorial nature of the first Au-TiO 2 NHDs when photo-excited, and thus the subsequent efficient carrier separation, the second photodeposition strictly takes place on the first gold NDs. Growth is epitaxial for bot

    Long‐term, amplified responses of soil organic carbon to nitrogen addition worldwide

    No full text
    Soil organic carbon (SOC) is the largest carbon sink in terrestrial ecosystems and plays a critical role in mitigating climate change. Increasing reactive nitrogen (N) in ecosystems caused by anthropogenic N input substantially affects SOC dynamics. However, uncertainties remain concerning the effects of N addition on SOC in both organic and mineral soil layers over time at the global scale. Here, we analyzed a large empirical data set spanning 60 years across 369 sites worldwide to explore the temporal dynamics of SOC to N addition. We found that N addition significantly increased SOC across the globe by 4.2% (2.7–5.8%). SOC increases were amplified from short- to long-term N addition durations in both organic and mineral soil layers. The positive effects of N addition on SOC were independent of ecosystem types, mean annual temperature and precipitation. Our findings suggest that SOC increases largely resulted from the enhanced plant C input to soils coupled with reduced C loss from decomposition and amplification was associated with reduced microbial biomass and respiration under long-term N addition. Our study suggests that N addition will enhance SOC sequestration over time and contribute to future climate change mitigation.This is the peer reviewed version of the following article: Xu, Chonghua, Xia Xu, Chenghui Ju, Han YH Chen, Brian J. Wilsey, Yiqi Luo, and Wei Fan. "Long‐term, amplified responses of soil organic carbon to nitrogen addition worldwide." Global Change Biology (2020), which has been published in final form at doi:10.1111/gcb.15489. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.</p

    Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS<sub>2</sub>/ZnS Core/Shell Colloidal Quantum Dots

    No full text
    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu<sub>2‑<i>x</i></sub>S nanocrystals (NCs), which are converted by topotactic partial Cu<sup>+</sup> for In<sup>3+</sup> exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750–1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators

    Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots

    No full text
    Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium-and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-Tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-Temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-Trapping of the hole assisted by defects in imperfectly passivated quantum dots

    Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots

    No full text
    The knowledge of the quantum dot (QD) concentration in a colloidal suspension and the quantitative understanding of the size-dependence of the band gap of QDs are of crucial importance from both applied and fundamental viewpoints. In this work, we investigate the size-dependence of the optical properties of nearly spherical wurtzite (wz) CuInS2 (CIS) QDs in the 2.7 to 6.1 nm diameter range (polydispersity ≤10%). The QDs are synthesized by partial Cu+ for In3+ cation exchange in template Cu2-xS NCs, which yields CIS QDs with very small composition variations (In/Cu= 0.91±0.11), regardless of their sizes. These well-defined QDs are used to investigate the size dependence of the band gap of wz CIS QDs. A sizing curve is also constructed for chalcopyrite CIS QDs by collecting and reanalyzing literature data. We observe that both sizing curves follow primarily a 1/d dependence. Moreover, the molar absorption coefficients and the absorption cross-section per CIS formula unit, both at 3.1 eV and at the band gap, are analyzed. The results demonstrate that the molar absorption coefficients of CIS QDs follow a power law at the first exciton transition energy (ε_(E_1 )=5208 d^2.45), and scale with the QD volume at 3.1 eV. This latter observation implies that the absorption cross-section per unit cell at 3.1 eV is size-independent, and therefore can be estimated from bulk optical constants. These results also demonstrate that the molar absorption coefficients at 3.1 eV are more reliable for analytical purposes, since they are less sensitive to size and shape dispersion

    Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots

    No full text
    The knowledge of the quantum dot (QD) concentration in a colloidal suspension and the quantitative understanding of the size-dependence of the band gap of QDs are of crucial importance from both applied and fundamental viewpoints. In this work, we investigate the size-dependence of the optical properties of nearly spherical wurtzite (wz) CuInS2 (CIS) QDs in the 2.7 to 6.1 nm diameter range (polydispersity ≤10%). The QDs are synthesized by partial Cu+ for In3+ cation exchange in template Cu2-xS NCs, which yields CIS QDs with very small composition variations (In/Cu= 0.91±0.11), regardless of their sizes. These well-defined QDs are used to investigate the size dependence of the band gap of wz CIS QDs. A sizing curve is also constructed for chalcopyrite CIS QDs by collecting and reanalyzing literature data. We observe that both sizing curves follow primarily a 1/d dependence. Moreover, the molar absorption coefficients and the absorption cross-section per CIS formula unit, both at 3.1 eV and at the band gap, are analyzed. The results demonstrate that the molar absorption coefficients of CIS QDs follow a power law at the first exciton transition energy (ε_(E_1 )=5208 d^2.45), and scale with the QD volume at 3.1 eV. This latter observation implies that the absorption cross-section per unit cell at 3.1 eV is size-independent, and therefore can be estimated from bulk optical constants. These results also demonstrate that the molar absorption coefficients at 3.1 eV are more reliable for analytical purposes, since they are less sensitive to size and shape dispersion
    corecore