3,732 research outputs found

    Holographic phonons by gauge-axion coupling

    Full text link
    In this paper, we show that a simple generalization of the holographic axion model can realize spontaneous breaking of translational symmetry by considering a special gauge-axion higher derivative term. The finite real part and imaginary part of the stress tensor imply that the dual boundary system is a viscoelastic solid. By calculating quasi-normal modes and making a comparison with predictions from the elasticity theory, we verify the existence of phonons and pseudo-phonons, where the latter is realized by introducing a weak explicit breaking of translational symmetry, in the transverse channel. Finally, we discuss how the phonon dynamics affects the charge transport.Comment: v3: 29 pages, 11 figures, matching the version published in JHE

    Spin-tensor Meissner currents of ultracold bosonic gas in an optical lattice

    Full text link
    We investigate the Meissner currents of interacting bosons subjected to a staggered artificial gauge field in a three-leg ribbon geometry, realized by spin-tensor--momentum coupled spin-1 atoms in a 1D optical lattice. By calculating the current distributions using the state-of-the-art density-matrix renormalization-group method, we find a rich phase diagram containing interesting Meissner and vortex phases, where the currents are mirror symmetric with respect to the {\color{red}middle leg} (i.e., they flow in the same direction on the two boundary legs opposite to that on the middle leg), leading to the spin-tensor type Meissner currents, which is very different from previously observed chiral edge currents under uniform gauge field. The currents are uniform along each leg in the Meissner phase and form vortex-antivortex pairs in the vortex phase. Besides, the system also support a polarized phase that spontaneously breaks the mirror symmetry, whose ground states are degenerate with currents either uniform or forming vortex-antivortex pairs. We also discuss the experimental schemes for probing these phases. Our work provides useful guidance to ongoing experimental research on synthetic flux ribbons and paves the way for exploring novel many-body phenomena therein.Comment: 10 pages, 9 figure

    An efficient background modeling approach based on vehicle detection

    Get PDF
    The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in detecting foreground image during the model phase, because it needs quite a long time to blend the shadows in the background. In order to overcome this problem, an improved method is proposed in this paper. First of all, each frame is divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the frequency and the scale of the vehicle access. For each area, different new learning rate including weight, mean and variance is applied to accelerate the elimination of shadows. At the same time, the measure of adaptive change for Gaussian distribution is taken to decrease the total number of distributions and save memory space effectively. With this method, different threshold value and different number of Gaussian distribution are adopted for different areas. The results show that the speed of learning and the accuracy of the model using our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, interference with the vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the processing speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the development of intelligent transportation, which is very meaningful to the other Background modeling methods. (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    • …
    corecore