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An efficient background modeling approach based on vehicle detection

Abstract
The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in
detecting foreground image during the model phase, because it needs quite a long time to blend the shadows
in the background. In order to overcome this problem, an improved method is proposed in this paper. First of
all, each frame is divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the
frequency and the scale of the vehicle access. For each area, different new learning rate including weight, mean
and variance is applied to accelerate the elimination of shadows. At the same time, the measure of adaptive
change for Gaussian distribution is taken to decrease the total number of distributions and save memory space
effectively. With this method, different threshold value and different number of Gaussian distribution are
adopted for different areas. The results show that the speed of learning and the accuracy of the model using
our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, interference with the
vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the processing
speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good
performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the
development of intelligent transportation, which is very meaningful to the other Background modeling
methods. (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading
of the abstract is permitted for personal use only.
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ABSTRACT 

 

The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in 

detecting foreground image during the model phase, because it needs quite a long time to blend the shadows in the 

background. In order to overcome this problem, an improved method is proposed in this paper. First of all, each frame is 

divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the frequency and the scale of the 

vehicle access. For each area, different new learning rate including weight, mean and variance is applied to accelerate the 

elimination of shadows. At the same time, the measure of adaptive change for Gaussian distribution is taken to decrease 

the total number of distributions and save memory space effectively. With this method, different threshold value and 

different number of Gaussian distribution are adopted for different areas. The results show that the speed of learning and 

the accuracy of the model using our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, 

interference with the vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the 

processing speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good 

performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the 

development of intelligent transportation, which is very meaningful to the other Background modeling methods.  

Keywords: Background modeling, Vehicle detection, Gaussian Mixture Model(GMM) 

1. INTRODUCTION 

At present, benefited from the rapid development of computer vision, artificial intelligence technology and 

hardware technology, image and video technology has been widely used in the new generation of intelligent 

transportation system. Commonly algorithm of vehicle detection based on video are optical flow method, frame 

difference method and background subtraction method[1 2]. Background elimination method is one of the most important 

methods in vehicle detection[1 3]. Common method has the mean background subtraction method, Gaussian average 

method, median method, kalman filter model law and Gaussian mixture model (GMM) method[4]. In view of the GMM 

has good practical effect, and wide application, this paper will focus on the algorithm and its improvement. 

In recent years, a lot of research work has been done and make a number of achievements in research of the GMM. 

In Reference [5], one of the most commonly used approaches for updating GMM is presented by Stauffer and Grimson, 

however, when the moving object resting for a long time, which still appears invalid status. In Reference [6], Lu 
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Qing-Hua built an adaptive learning rate schedule for each Gaussian distribution, calculate the ratio of each pixel 

adaptive learning algorithm to improve the convergence rate, but it needs the approximation for parameters update rate, 

which is not optimal algorithms. In Reference [7], Shimada reduce the number of Gaussian distribution by combining 

similar Gaussian distribution, although the amount of calculation is reduced, but processing accuracy has dropped a lot. 

There are still many other techniques using high level processing to assist the background modelling have been proposed, 

such as Ref[8] [9]etc. Based on the research of our laboratory[10-11], we also get a lot of inspiration. An improved 

algorithm is proposed based on the recent results. Not only the parameters including weight, mean and variance but also 

the number of the Gaussian distribution is adapted for each pixel constantly. By selecting the number of components for 

each pixel in an online process, the algorithm has good adaptability to the scene. 

2. THE PRINCIPLE OF GAUSSIAN MIXTURE MODEL 

    In this section, we will analyze the principle of Stauffer and Grimson [5] and its disadvantage. The authors model 

each background pixel with K Gaussian distributions (usually, K ranges from 3 to 5). The probability of the random 

variable Xt at time T can be expressed as 
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Where 
tk ,  represents the weight parameter of the kth Gaussian component, ),,(  kttk X   represents the 

probability of the normal distribution of kth  Gaussian component can be expressed as 
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Where t  represents the mean value and Ikk

2

   represents the covariance. It is time to judge which Gaussian 

distribution is most probable to blend in background model after model update. Based on the appropriate value 
ktkW /,
 

we can sort the K distributions and the first B distributions are chosen as a background model. B can be expressed as: 
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Where T is the threshold of the background model, which represents the minimum prior probability of the background. 

Every new pixel value is checked against the existing K Gaussian distributions until a match is found. The Gaussian 

component which has been identified as suitable will be updated and is represented by the following formula: 
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where   is the learning rate for weight and tkM , is 1 if the model which matched, otherwise it is 0,  is the learning 

rate for mean value and variance. 

; if 
tkM ,
 is the match Gaussian component 

; otherwise 
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3. THE REVISED GAUSSIAN MIXTURE MODEL     

3.1 Accelerate the elimination of shadows 

   In actual traffic scene, there is often a movement of the vehicle in the 1st frame, After the initialization, the 

movement of the vehicles will be as a background, so when dealing with subsequent frames, the moving vehicle area for 

a long time as a prospect to extract, produce the so-called shadow. The existence of the shadow will affect the modeling 

background, impact on subsequent vehicle tracking and counting. The conventional GMM need quite a long time to 

blend the shadows in the background. 

   A method to accelerate the elimination of shadows is proposed in this paper, first of all, we divide each frame into 

several areas, as shown in figure 1. Where area B, C and D are the places where vehicle through, and decided by the 

frequency and the scale of the vehicle access, area A is the external environment. And we also set up an initialization 

frames T, on T frames adopt different parameters before and after the update method. 
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   Fig. 1 Region segmentation 
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where 
t  is the learning rate for weight, 

t  is the learning rate for mean and variance, f is the current video frames, 

AUB represents collection of regional A and B. We can see that, before the T frames, the weight and variance are bigger, 

so, Background are updated faster, can accelerate the elimination of shadows, and more important, it is found that the 

place where vehicles appear frequently and most influential is just the place where the detection is strong. After the T 

frames, learning rate for weights and variance is set to a constant, this will ensure that does not reduce the ability to adapt 

to environmental change, speed up the computation. According to experience, we make the value of T is 200.  

3.2 Save memory space and reduce the execution time 

   GMM will set up K Gaussian models for each pixel in a general way, actually this will cause the waste of memory 

space. Because the possibility of moving object is very small in many regions, often only need a single or a small amount 

of Gaussian distribution. Therefore, this paper proposes an improved method, on the basis of the Gaussian mixture model, 

for each pixel dynamic increase or decrease the number of Gaussian distribution but place a cap on each pixel. 

Initializing each pixel has only one Gaussian distribution, when the arrival of a new frame, if a match is not found in the 

distribution of the pixel, and the distribution of pixels is less than the upper limit value M, then add a distribution to the 

pixel with the current value as the mean, and give a small weight and large variance. If the distribution is equal to the 

number of pixels on the limit of M, then replace with a new distribution of the final distribution(take the minimum of 

kkW / ). Due to the area A and B are large and have little change, the distribution of these weights will become very 

small, and the area C and D are the place where we care about most, if we adopt the same threshold value, then due to 

the number of pixels distribution does not reach the upper limit in the area A and B, the distribution will not be replaced, 

so the algorithm clear the distribution of the weight which is very small every L frames, and even more important, we 

make use of statistical histogram dividing different thresholds to reduce unnecessary distribution, save memory space, 
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Video Image 

 Standard GMM 

foreground image 

 Standard GMM 

background image 

improve the processing speed. 

4. MEASUREMENTS PROCESSING AND RESULTS 

    This section demonstrates the performance of the Stauffer and Grimson model [5] and our proposed algorithms on an 

image sequence. To analyze the performance of the algorithm we used three dynamic scenes with fixed number of 

components M = 3. The sequences were manually segmented to generate the ground truth, in order to better observations, 

the sequence shown here are 640X480 images at 30 fps. The programming environment is Visual Studio 2012 edition 

with OpenCV 2.4.9. The hardware environment is Intel 3.2GHz, RAM 4G.Before the improvements,  =0.003， =0.01. 

After the improvements, T=200, L=50. Figure 2 shows the result of shadow elimination. Figure 3 shows the time they 

take for the algorithm and the number of models.Figure 4 is a bar chart that displays the comparison of model numbers 

between standard and improved GMM.Figure 5 is a line chart that expresses the comparison of model numbers between 

standard and improved GMM. 

    We can see something to be expected from the figure. In the aspect of shadow elimination(we can refer to figure 1), 

before the improvements, four cars before the picture is initialized to the background, we also can see that the cars in the 

foreground already overlap. In the subsequent frames, they also stay in the background, at the same time,the four cars 

still appear in the foreground cause that make our detection error, basically disappear until the 200th frame. After the 

improvements, probably to the 50th frame, interference with the vehicle is basically eliminated, effect is remarkable, and 

save time for vehicle detection significantly.  
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 Improved GMM 

foreground image 

 Improved GMM 

background image 

            

 

Fig. 2 The comparison of modeling between standard and improved GMM 

 

Video frame 20th frame 50th frame 100th frame 150th frame 200th frame 

computation 

time/ms 

Standard 84 88 88 84 80 

Improved 65 66 67 68 67 

Model 

numbers 

Standard 921600 921600 921600 921600 921600 

Improved 324231 356810 361520 379243 395242 

Fig. 3 The comparison of computation time and model numbers 

 

         

 

 

 

 

 

 

 

 

                           Fig. 4                                               Fig. 5  

Fig. 4 The comparison of model numbers between standard and improved GMM 

Fig. 5 The comparison of computation time between standard and improved GMM 

 

     In the aspect of computation time and model numbers, it is concluded that the original data as shown in the figure 

2. In order to observe conveniently, we make different figures for computation time and model numbers. Model numbers 

is shown in figure 3, we shall see a clean result that model number only 57% to 65% of the standard and save memory 

space effectively after the improvement. Computation time is shown in figure 4, the improved GMM significantly 

accelerate the processing speed base the trends of the computation time. All things considered, the improved GMM is 

doing pretty well as we have seen. 
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5. CONCLUSIONS 

We have presented new update algorithms for learning rate including weight, mean and variance to accelerate the 

elimination of shadows, at the same time,we take the measure of adaptive change for Gaussian distribution numbers to 

decrease the total number of distributions and save memory space effectively. The results show that the speed of learning 

and the accuracy of the model using our new update algorithm surpass the traditional GMM, it has good performance in 

terms of elimination of shadow and processing speed for vehicle detection. 
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