2,321 research outputs found

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Cognitive Deficit of Deep Learning in Numerosity

    Full text link
    Subitizing, or the sense of small natural numbers, is an innate cognitive function of humans and primates; it responds to visual stimuli prior to the development of any symbolic skills, language or arithmetic. Given successes of deep learning (DL) in tasks of visual intelligence and given the primitivity of number sense, a tantalizing question is whether DL can comprehend numbers and perform subitizing. But somewhat disappointingly, extensive experiments of the type of cognitive psychology demonstrate that the examples-driven black box DL cannot see through superficial variations in visual representations and distill the abstract notion of natural number, a task that children perform with high accuracy and confidence. The failure is apparently due to the learning method not the CNN computational machinery itself. A recurrent neural network capable of subitizing does exist, which we construct by encoding a mechanism of mathematical morphology into the CNN convolutional kernels. Also, we investigate, using subitizing as a test bed, the ways to aid the black box DL by cognitive priors derived from human insight. Our findings are mixed and interesting, pointing to both cognitive deficit of pure DL, and some measured successes of boosting DL by predetermined cognitive implements. This case study of DL in cognitive computing is meaningful for visual numerosity represents a minimum level of human intelligence.Comment: Accepted for presentation at the AAAI-1

    The Improved Dijkstra's Shortest Path Algorithm and Its Application

    Get PDF
    AbstractThe shortest path problem exists in variety of areas. A well known shortest path algorithm is Dijkstra's, also called “label algorithm”. Experiment results have shown that the “label algorithm” has the following issues: I.. Its exiting mechanism is effective to undigraph but ineffective to digraph, or even gets into an infinite loop; II. It hasn’t addressed the problem of adjacent vertices in shortest path; III.. It hasn’t considered the possibility that many vertices may obtain the “p-label” simultaneously. By addressing these issues, we have improved the algorithm significantly. Our experiment results indicate that the three issues have been effectively resolved

    Fatigue Cracking Behaviors and Influence Factors of Cast Magnesium Alloys

    Get PDF

    On Higher Derivative Couplings in Theories with Sixteen Supersymmetries

    Get PDF
    We give simple arguments for new non-renormalization theorems on higher derivative couplings of gauge theories to supergravity, with sixteen supersymmetries, by considerations of brane-bulk superamplitudes. This leads to some exact results on the effective coupling of D3-branes in type IIB string theory. We also derive exact results on higher dimensional operators in the torus compactification of the six dimensional (0, 2) superconformal theory.Comment: 31 pages, 10 figures, section 2 reconstructured, new result in section 3.2, additional clarifications adde

    (2,2) Superconformal Bootstrap in Two Dimensions

    Get PDF
    We find a simple relation between two-dimensional BPS N=2 superconformal blocks and bosonic Virasoro conformal blocks, which allows us to analyze the crossing equations for BPS 4-point functions in unitary (2,2) superconformal theories numerically with semidefinite programming. We constrain gaps in the non-BPS spectrum through the operator product expansion of BPS operators, in ways that depend on the moduli of exactly marginal deformations through chiral ring coefficients. In some cases, our bounds on the spectral gaps are observed to be saturated by free theories, by N=2 Liouville theory, and by certain Landau-Ginzburg models.Comment: 56 pages, 14 figure
    • …
    corecore