11 research outputs found

    Deciphering an isolated lung phenotype of NKX2-1 frameshift pathogenic variant

    Get PDF
    Backgroundto perform a functional analysis of a new NK2 homeobox 1 (NKX2-1) variant (c.85_86del denominated NKX2-1DEL) identified in a family presenting with isolated respiratory disease, in comparison to another frameshift variant (c.254dup denominated NKX2-1DUP) identified in a subject with classical brain-lung-thyroid syndrome.Methodspathogenic variants were introduced into the pcDNA3-1(+)-wt-TTF1 plasmid. The proteins obtained were analyzed by western blot assay. Subcellular localization was assessed by confocal microscopy in A549 and Nthy cells. Transactivation of SFTPA, SFTPB, SFTPC, and ABCA3 promoters was assessed in A549 cells. Thyroglobulin promoter activity was measured with the paired box gene 8 (PAX8) cofactor in Nthy cells.ResultsThe two sequence variants were predicted to produce aberrant proteins identical from the 86th amino acid, with deletion of their functional homeodomain, including the nuclear localization signal. However, 3D conformation prediction of the conformation prediction of the mutant protein assumed the presence of a nuclear localization signal, a bipartite sequence, confirmed by confocal microscopy showing both mutant proteins localized in the nucleus and cytoplasm. Transcriptional activity with SFTPA, SFTPB, SFTPC, ABCA3 and thyroglobulin promoters was significantly decreased with both variants. However, with NKX2-1DEL, thyroglobulin transcriptional activity was maintained with the addition of PAX8.ConclusionThese results provide novel insights into understanding the molecular mechanism of phenotypes associated with NKX2-1 pathogenic variants

    Implication de la connexine 43 dans le couplage jonctionnel au cours de la spermatogenèse normale et pathologique, ainsi que dans un modèle de cinétique tumorale

    No full text
    Le couplage jonctionnel a été étudié en fonction des stades de la spermatogenèse. Il est élevé aux stades I-VIII et XI-XIV, avec un maximum aux stades VII-VIII et un couplage presque nul aux stades IX-X. Le couplage jonctionnel se fait à partir de la cellule de Sertoli vers les cellules germinales. La Cx43 joue un rôle dans le couplage jonctionnel. La spermatogenèse est altérée à long terme après une hyperthermie testiculaire. Le couplage jonctionnel et l'expression de la Cx43 ont été étudiés après hyperthermie testiculaire. Le couplage jonctionnel est abolie de 2h à 24 h après l'hyperthermie et comparable à la normale à 48h. Par contre l'expression de la Cx43 est annulée à 24h. La fermeture du canal jonctionnel pourrait être due à la présence de formes non phosphorylées dans la plaque jonctionnelle. Dans un modèle murin de mise en place du cancer de cellules de Leydig, l'expression de la Cx43 a été examinée. La séquestration de la Cx43 dans l'endosome est un évènement précoce du cancer.The GJIC was studied depending the stages of spermatogenesis. It was elevated at stages I-VIII and XI-XIV, with a maximum at stages VII-VIII and a minima at stages IX-X. The GJIC was originate from the Sertoli cell towards germ cell but never at the inverse. The Cx43 play a role in this GJIC. The spermatogenesis is abnormal after short time temperature exposure of testis. The GJIC and Cx43 was examinated after testicular hyperthermia. The GJIC was abolished from 2 to 24h after hyperthermia and comparable to normal at 48h. The Cx43 was abolished only 24h after. The channel closure should be due to arrival of un-phosphorylated form of Cx43 in the membrane. During a murin leydig cancer, the Cx43 sequestrated in early endosomes was an early event.PARIS5-BU Saints-Pères (751062109) / SudocSudocFranceF

    Deciphering an isolated lung phenotype of NKX2-1 frameshift pathogenic variant

    No full text
    Background to perform a functional analysis of a new NK2 homeobox 1 (NKX2-1) variant (c.85_86del denominated NKX2-1 DEL ) identified in a family presenting with isolated respiratory disease, in comparison to another frameshift variant (c.254dup denominated NKX2-1 DUP ) identified in a subject with classical brain-lung-thyroid syndrome. Methods pathogenic variants were introduced into the pcDNA3-1(+)-wt-TTF1 plasmid. The proteins obtained were analyzed by western blot assay. Subcellular localization was assessed by confocal microscopy in A549 and Nthy cells. Transactivation of SFTPA , SFTPB , SFTPC , and ABCA3 promoters was assessed in A549 cells. Thyroglobulin promoter activity was measured with the paired box gene 8 (PAX8) cofactor in Nthy cells. Results The two sequence variants were predicted to produce aberrant proteins identical from the 86th amino acid, with deletion of their functional homeodomain, including the nuclear localization signal. However, 3D conformation prediction of the conformation prediction of the mutant protein assumed the presence of a nuclear localization signal, a bipartite sequence, confirmed by confocal microscopy showing both mutant proteins localized in the nucleus and cytoplasm. Transcriptional activity with SFTPA, SFTPB, SFTPC, ABCA3 and thyroglobulin promoters was significantly decreased with both variants. However, with NKX2-1 DEL , thyroglobulin transcriptional activity was maintained with the addition of PAX8. Conclusion These results provide novel insights into understanding the molecular mechanism of phenotypes associated with NKX2-1 pathogenic variants

    Deciphering the mechanism of Q145H SFTPC mutation unmasks a splicing defect and explains the severity of the phenotype

    No full text
    International audienceMutations in the gene encoding surfactant protein C (SFTPC) have led to a broad range of phenotypes from neonatal respiratory distress syndrome to adult interstitial lung disease. We previously identified the c.435G4C variant in the SFTPC gene associated with fatal neonatal respiratory distress syndrome in an infant girl. Although this variation is predicted to change glutamine (Q) at position 145 to histidine (H), its position at the last base of exon 4 and the severity of the phenotype suggested that it might also induce a splicing defect. To test this hypothesis, we used hybrid minigene, biochemical and immunofluorescence tools to decipher the molecular mechanism of the mutation. Immunoblotting and confocal imaging showed similar maturation and localization of wild-type and Q145H proteins, but hybrid minigene analysis showed complete exon 4 skipping. Since the exon 4 is in frame, a putative truncated protein of 160 amino acids would be produced. We have shown that this truncated protein had an altered intracellular trafficking and maturation. The c.435G4C mutation is deleterious not because of its amino acid substitution but because of its subsequent splicing defect and should be referred to as r.325_435del and p.Leu109_Gln145del. The absence of residual full-length transcripts fully explained the severity of the phenotype we observed in the infant

    Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR

    No full text
    International audienceCystic Fibrosis is a lethal monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The most frequent mutation is the deletion of phenylalanine at position 508 of the protein. This F508del-CFTR mutation leads to misfolded protein that is detected by the quality control machinery within the endoplasmic reticulum and targeted for destruction by the proteasome. Modulating quality control proteins as molecular chaperones is a promising strategy for attenuating the degradation and stabilizing the mutant CFTR at the plasma membrane. Among the molecular chaperones, the small heat shock protein HspB1 and HspB4 were shown to promote degradation of F508del-CFTR. Here, we investigated the impact of HspB5 expression and phosphorylation on transport to the plasma membrane, function and stability of F508del-CFTR. We show that a phosphomimetic form of HspB5 increases the transport to the plasma membrane, function and stability of F508del-CFTR. These activities are further enhanced in presence of therapeutic drugs currently used for the treatment of cystic fibrosis (VX-770/Ivacaftor, VX-770+VX-809/Orkambi). Overall, this study highlights the beneficial effects of a phosphorylated form of HspB5 on F508del-CFTR rescue and its therapeutic potential in cystic fibrosis

    Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts.

    No full text
    International audienceOBJECTIVES: The expression and distribution of connexins is abnormal in a number of cardiac diseases, including atrial fibrillation, and is believed to favor conduction slowing and arrhythmia. Here, we studied the role of atrial structural remodeling in the disorganization of gap junctions and whether redistributed connexins can form new functional junction channels. METHODS: Expression of connexin-43 (Cx43) was characterized by immunoblotting and immunohistochemistry in human right atrial specimens and in rat atria after myocardial infarction (MI). Gap junctions were studied by electron and 3-D microscopy, and myocyte-myocyte coupling was determined by Lucifer yellow dye transfer. RESULTS: In both chronically hemodynamically overloaded human atria in sinus rhythm and in dilated atria from MI-rats, Cx43 were dephosphorylated and redistributed from the intercalated disc to the lateral cell membranes as observed during atrial fibrillation. In MI-rats, the gap junctions at the intercalated disc were smaller (20% decrease) and contained very little Cx43 (0 or 1 gold particle vs. 42 to 98 in sham-operated rats). In the lateral membranes of myocytes, numerous connexon aggregates comprising non-phosphorylated Cx43 were observed. These connexon aggregates were in no case assembled into gap junction plaque-like structures. However, N-cadherin was well organized in the intercalated disc. There was very little myocyte-myocyte coupling in MI-rat atria and no myocyte-fibroblast coupling. Regression of the atrial remodeling was associated with the normalization of Cx43 localization. CONCLUSION: Structural alteration of the atrial myocardium is an important factor in the disorganization of connexins and gap junction. Moreover, redistributed Cx43 do not form junction channels

    Slow CCL2-dependent translocation of biopersistent particles from muscle to brain.

    Get PDF
    BACKGROUND: Long-term biodistribution of nanomaterials used in medicine is largely unknown. This is the case for alum, the most widely used vaccine adjuvant, which is a nanocrystalline compound spontaneously forming micron/submicron-sized agglomerates. Although generally well tolerated, alum is occasionally detected within monocyte-lineage cells long after immunization in presumably susceptible individuals with systemic/neurologic manifestations or autoimmune (inflammatory) syndrome induced by adjuvants (ASIA). METHODS: On the grounds of preliminary investigations in 252 patients with alum-associated ASIA showing both a selective increase of circulating CCL2, the major monocyte chemoattractant, and a variation in the CCL2 gene, we designed mouse experiments to assess biodistribution of vaccine-derived aluminum and of alum-particle fluorescent surrogates injected in muscle. Aluminum was detected in tissues by Morin stain and particle induced X-ray emission) (PIXE) Both 500 nm fluorescent latex beads and vaccine alum agglomerates-sized nanohybrids (Al-Rho) were used. RESULTS: Intramuscular injection of alum-containing vaccine was associated with the appearance of aluminum deposits in distant organs, such as spleen and brain where they were still detected one year after injection. Both fluorescent materials injected into muscle translocated to draining lymph nodes (DLNs) and thereafter were detected associated with phagocytes in blood and spleen. Particles linearly accumulated in the brain up to the six-month endpoint; they were first found in perivascular CD11b+ cells and then in microglia and other neural cells. DLN ablation dramatically reduced the biodistribution. Cerebral translocation was not observed after direct intravenous injection, but significantly increased in mice with chronically altered blood-brain-barrier. Loss/gain-of-function experiments consistently implicated CCL2 in systemic diffusion of Al-Rho particles captured by monocyte-lineage cells and in their subsequent neurodelivery. Stereotactic particle injection pointed out brain retention as a factor of progressive particle accumulation. CONCLUSION: Nanomaterials can be transported by monocyte-lineage cells to DLNs, blood and spleen, and, similarly to HIV, may use CCL2-dependent mechanisms to penetrate the brain. This occurs at a very low rate in normal conditions explaining good overall tolerance of alum despite its strong neurotoxic potential. However, continuously escalating doses of this poorly biodegradable adjuvant in the population may become insidiously unsafe, especially in the case of overimmunization or immature/altered blood brain barrier or high constitutive CCL-2 production.European Community's Seventh Framework Programme in the project ENDOSTEM "Activation of vasculatur

    Unsolved severe chronic rhinosinusitis elucidated by extensive CFTR

    No full text
    International audienceSevere chronic rhinosinusitis in children should alert clinicians and extensive CFTR genotyping should be performed. We propose that thorough clinical and functional assessment in severe chronic rhinosinusitis is valuable to discover rare mutations which could be treated by CFTR correctors to postpone pulmonary infection

    c-mip impairs podocyte proximal signaling and induces heavy proteinuria.

    No full text
    International audienceIdiopathic nephrotic syndrome comprises several podocyte diseases of unknown origin that affect the glomerular podocyte, which controls the permeability of the filtration barrier in the kidney to proteins. It is characterized by the daily loss of more than 3 g of protein in urine and the lack of inflammatory lesions or cell infiltration. We found that the abundance of c-mip (c-maf inducing protein) was increased in the podocytes of patients with various acquired idiopathic nephrotic syndromes in which the podocyte is the main target of injury. Mice engineered to have excessive c-mip in podocytes developed proteinuria without morphological alterations, inflammatory lesions, or cell infiltration. Excessive c-mip blocked podocyte signaling by preventing the interaction of the slit diaphragm transmembrane protein nephrin with the tyrosine kinase Fyn, thereby decreasing phosphorylation of nephrin in vitro and in vivo. Moreover, c-mip inhibited interactions between Fyn and the cytoskeletal regulator N-WASP (neural Wiskott-Aldrich syndrome protein) and between the adaptor protein Nck and nephrin, potentially accounting for cytoskeletal disorganization and the effacement of foot processes seen in idiopathic nephrotic syndromes. The intravenous injection of small interfering RNA targeting c-mip prevented lipopolysaccharide-induced proteinuria in mice. Together, these results identify c-mip as a key component in the molecular pathogenesis of acquired podocyte diseases
    corecore