3 research outputs found

    The impact of substrate characteristics on the collection and persistence of biological materials, and their implications for forensic casework

    No full text
    This study assessed the level of nucleic acid persistence on the substrate pre-, and post-swabbing, in order to assess whether biological materials (touch, saliva, semen, and blood) are collected differently depending on the substrate characteristics. A total of 48 samples per deposit and substrate variety (n = 384) were assessed by tracking the persistence of nucleic acid using Diamond™ Nucleic Acid Dye (DD) staining and Polilight photography. The number of DD nucleic acid fluorescent complexes formed post-staining were counted (fluorescent count) and in conjunction with the fluorescence signal intensity (DD nucleic acid complex accumulation) used to estimate the level of nucleic acid persistence on substrates. Touch deposits have shown to be the most persistent deposit with strong adhesion capabilities on both substrate verities. Saliva displayed a higher persistence than semen and/or blood. Semen displayed a high collection efficiency as well as a high fluorescence signal intensity. Blood displayed a low persistence on both substrates with a superior collection efficiency that may also indicate a higher probability to become dislodged from surfaces given a particular activity. Our research has shown that the persistence and recovery of biological deposits is not only measurable but more importantly, may have the potential to be estimated, as such, may build an understanding that can provide valuable guidance for collection efficiency evaluations, and the assessing of the probability of particular profiles, given alternate propositions of means of transfer occurring

    An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii

    No full text
    Q fever is caused by the bacterium Coxiella burnetii and is spread to humans from infected animals especially goats, sheep and cattle, predominantly when giving birth. There is an effective human vaccine (Q-VAX) against Q fever, and although Q fever is a worldwide problem, the vaccine is only used in Australia due to difficulties associated with its use and the risk of adverse reactions. The desire to protect humans, particularly farmers and abattoir workers, from Q fever prompted the development of a new safe and effective human vaccine without all the difficulties associated with the current vaccine. Candidate vaccines were prepared using purified O-specific polysaccharide (OSP) extracted from the lipopolysaccharide of virulent (phase 1) C. burnetii, strain Nine Mile, which was then conjugated to a tetanus toxoid (TT) carrier protein. Two vaccines were prepared using OSP from C. burnetii grown in embryonated eggs (vaccine A) and axenic media (vaccine B). Vaccines with or without alum adjuvant were used to vaccinate guinea pigs, which were later challenged by intranasal inoculation with virulent C. burnetii. Both vaccines protected guinea pigs from fever and loss of weight post challenge. Post-mortem samples of the spleen, liver and kidney of vaccinated guinea pigs contained substantially less C. burnetii DNA as measured by PCR than those of the unvaccinated control animals. This study demonstrated that a C. burnetii OSP-TT conjugate vaccine is capable of inducing protection against virulent C. burnetii in guinea pigs. Additionally, OSP derived from C. burnetii grown in axenic media compared to OSP from embryonated eggs is equivalent in terms of providing a protective immune response
    corecore