57 research outputs found

    Endothelial and Macrophage-Specific Deficiency of P38α MAPK Does Not Affect the Pathogenesis of Atherosclerosis in ApoE−/− Mice

    Get PDF
    BACKGROUND: The p38α Mitogen-Activated Protein Kinase (MAPK) regulates stress- and inflammation-induced cellular responses. Factors implicated in the development of atherosclerosis including modified low-density lipoprotein (LDL), cytokines and even shear stress induce p38 activation in endothelial cells and macrophages, which may be important for plaque formation. This study investigates the effects of endothelial- and macrophage-specific deficiency of p38α in atherosclerosis development, in Apolipoprotein E deficient (ApoE(-/-)) mice. METHODOLOGY/PRINCIPAL FINDINGS: ApoE(-/-) mice with macrophage or endothelial cell-specific p38α deficiency were fed a high cholesterol diet (HCD) for 10 weeks and atherosclerosis development was assessed by histological and molecular methods. Surprisingly, although p38α-deficiency strongly attenuated oxidized LDL-induced expression of molecules responsible for monocyte recruitment in endothelial cell cultures in vitro, endothelial-specific p38α ablation in vivo did not affect atherosclerosis development. Similarly, macrophage specific deletion of p38α did not affect atherosclerotic plaque development in ApoE(-/-) mice. CONCLUSIONS: Although previous studies implicated p38α signaling in atherosclerosis, our in vivo experiments suggest that p38α function in endothelial cells and macrophages does not play an important role in atherosclerotic plaque formation in ApoE deficient mice

    Tumor Necrosis Factor (TNF) Receptor Shedding Controls Thresholds of Innate Immune Activation That Balance Opposing TNF Functions in Infectious and Inflammatory Diseases

    Get PDF
    Tumor necrosis factor (TNF) is a potent cytokine exerting critical functions in the activation and regulation of immune and inflammatory responses. Due to its pleiotropic activities, the amplitude and duration of TNF function must be tightly regulated. One of the mechanisms that may have evolved to modulate TNF function is the proteolytic cleavage of its cell surface receptors. In humans, mutations affecting shedding of the p55TNF receptor (R) have been linked with the development of the TNFR-associated periodic syndromes, disorders characterized by recurrent fever attacks and localized inflammation. Here we show that knock-in mice expressing a mutated nonsheddable p55TNFR develop Toll-like receptor–dependent innate immune hyperreactivity, which renders their immune system more efficient at controlling intracellular bacterial infections. Notably, gain of function for antibacterial host defenses ensues at the cost of disbalanced inflammatory reactions that lead to pathology. Mutant mice exhibit spontaneous hepatitis, enhanced susceptibility to endotoxic shock, exacerbated TNF-dependent arthritis, and experimental autoimmune encephalomyelitis. These results introduce a new concept for receptor shedding as a mechanism setting up thresholds of cytokine function to balance resistance and susceptibility to disease. Assessment of p55TNFR shedding may thus be of prognostic value in infectious, inflammatory, and autoimmune diseases

    Absence of p55 TNF Receptor Reduces Atherosclerosis, but Has No Major Effect on Angiotensin II Induced Aneurysms in LDL Receptor Deficient Mice

    Get PDF
    The aim of the current study was to investigate the role of p55 TNF Receptor (p55 TNFR), the main signaling receptor for the pro-inflammatory cytokine tumor necrosis factor (TNF), in the development of two vascular disorders: atherosclerosis and angiotensin (Ang) II-induced abdominal aortic aneurysms (AAA). p55 TNFR deficient mice were crossed to an LDL receptor deficient background and were induced for the development of either atherosclerosis or AngII-induced AAA, and compared to littermate controls, wild-type for p55 TNFR expression. p55 TNFR deficient mice developed 43% smaller atherosclerotic lesions in the aortic sinuses compared to controls. Moreover, expression of CD68, a macrophage specific marker, exhibited a 50% reduction in the aortic arches. Decreased atherosclerosis correlated with a strong down-regulation in the expression of adhesion molecules, such as VCAM-1 and ICAM-1, by p55 TNFR deficient endothelium. In addition, expression levels of the pro-inflammatory cytokines and chemokines TNF, IL-6, MCP-1 and RANTES were significantly reduced in aortas of p55 TNFR deficient mice. In contrast, in the AngII-induced model of AAA, p55 TNFR deficiency correlated with a slight trend towards increased aneurismal lethality, but the incidence of aortic rupture due to a dissecting aneurysm, and the expansion of the suprarenal aorta were not significantly different compared to controls. We found that p55 TNFR expression promotes atherosclerosis, among other mechanisms, by enhancing expression of endothelial adhesion molecules, while it seems to have no major role in the development of AngII-induced AA

    Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery

    Get PDF
    Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed

    Pharmacological inhibition of 17β-hydroxysteroid dehydrogenase impairs human endometrial cancer growth in an orthotopic xenograft mouse model

    Get PDF
    Endometrial cancer (EC) is the most common gynaecological tumor in developed countries and its incidence is increasing. Approximately 80% of newly diagnosed EC cases are estrogen-dependent. Type 1 17β-hydroxysteroid dehydrogenase (17β-HSD-1) is the enzyme that catalyzes the final step in estrogen biosynthesis by reducing the weak estrogen estrone (E1) to the potent estrogen 17β-estradiol (E2), and previous studies showed that this enzyme is implicated in the intratumoral E2 generation in EC. In the present study we employed a recently developed orthotopic and estrogen-dependent xenograft mouse model of EC to show that pharmacological in-hibition of the 17β-HSD-1 enzyme inhibits disease development. Tumors were induced in one uterine horn of athymic nude mice by  intrauterine injection of  the  well-differentiated human endometrial adenocarcinoma Ishikawa cell line, modified to express human 17β-HSD-1 in levels comparable to EC, and the luciferase and green fluorescent protein reporter genes. Controlled estrogen exposure in ovariectomized mice was achieved using subcutaneous MedRod implants that released either the low active estrone (E1) precursor or vehicle. A subgroup of E1 supplemented mice received daily oral gavage of FP4643, a well-characterized 17β-HSD-1 in-hibitor. Bioluminescence imaging (BLI) was used to measure tumor growth non-invasively. At sacrifice, mice receiving E1  and  treated with the  FP4643 inhibitor showed a  significant reduction in  tumor growth by approximately 65% compared to mice receiving E1. Tumors exhibited metastatic spread to the peritoneum, to the  lymphovascular space (LVI), and  to  the  thoracic cavity. Metastatic spread and  LVI  invasion were both significantly reduced in the inhibitor-treated group. Transcriptional profiling of tumors indicated that FP4643 treatment reduced the oncogenic potential at the mRNA level. In conclusion, we show that 17β-HSD-1 inhibition represents a promising novel endocrine treatment for EC.   </div

    Myeloid IκBα Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques

    Get PDF
    Activation of the transcription factor NF-κB appears to be involved in different stages of atherogenesis. In this paper we investigate the role of NF-κB inhibitor IκBα in atherosclerosis. Myeloid-specific deletion of IκBα results in larger and more advanced lesions in LDL-R-deficient mice without affecting the compositional phenotype of the plaques or systemic inflammatory markers in the plasma. We show that IκBα-deleted macrophages display enhanced adhesion to an in vitro endothelial cell layer, coinciding with an increased expression of the chemokine CCL5. Also, in vivo we found that IκBαdel mice had more leukocytes adhering to the luminal side of the endothelial cell layers that cover the atherosclerotic plaques. Moreover, we introduce ER-MP58 in this paper as a new immunohistochemical tool for quantifying newly recruited myeloid cells in the atherosclerotic lesion. This staining confirms that in IκBαdel mice more leukocytes are attracted to the plaques. In conclusion, we show that IκBα deletion in myeloid cells promotes atherogenesis, probably through an induced leukocyte recruitment to plaques

    Towards Endometriosis Diagnosis by Gadofosveset-Trisodium Enhanced Magnetic Resonance Imaging

    Get PDF
    Endometriosis is defined as the presence of endometrial tissue outside the uterus. It affects 10–15% of women during reproductive age and has a big personal and social impact due to chronic pelvic pain, subfertility, loss of work-hours and medical costs. Such conditions are exacerbated by the fact that the correct diagnosis is made as late as 8–11 years after symptom presentation. This is due to the lack of a reliable non-invasive diagnostic test and the fact that the reference diagnostic standard is laparoscopy (invasive, expensive and not without risks). High-molecular weight gadofosveset-trisodium is used as contrast agent in Magnetic Resonance Imaging (MRI). Since it extravasates from hyperpermeable vessels more easily than from mature blood vessels, this contrast agent detects angiogenesis efficiently. Endometriosis has high angiogenic activity. Therefore, we have tested the possibility to detect endometriosis non-invasively using Dynamic Contrast-Enhanced MRI (DCE-MRI) and gadofosveset-trisodium as a contrast agent in a mouse model. Endometriotic lesions were surgically induced in nine mice by autologous transplantation. Three weeks after lesion induction, mice were scanned by DCE-MRI. Dynamic image analysis showed that the rates of uptake (inwash), persistence and outwash of the contrast agent were different between endometriosis and control tissues (large blood vessels and back muscle). Due to the extensive angiogenesis in induced lesions, the contrast agent persisted longer in endometriotic than control tissues, thus enhancing the MRI signal intensity. DCE-MRI was repeated five weeks after lesion induction, and contrast enhancement was similar to that observed three weeks after endometriosis induction. The endothelial-cell marker CD31 and the pericyte marker α-smooth-muscle-actin (mature vessels) were detected with immunohistochemistry and confirmed that endometriotic lesions had significantly higher prevalence of new vessels (CD31 only positive) than the uterus and control tissues. The diagnostic value of gadofosveset-trisodium to detect endometriosis should be tested in human settings

    Endometriotic cell culture contamination and authenticity:a source of bias in in vitro research?

    No full text
    STUDY QUESTION: Are the primary cell cultures and cell lines used in endometriosis research of sufficient quality? SUMMARY ANSWER: Primary cells used in endometriosis research lack purity and phenotypic characterisation, and cell lines are not genotypically authenticated. WHAT IS KNOWN ALREADY: The poor reproducibility of in vitro research and the lack of authenticity of the cell lines used represent reasons of concern in the field of reproductive biology and endometriosis research. STUDY DESIGN, SIZE, DURATION: In the present study, past in vitro research in the field of endometriosis was systematically reviewed to determine whether the appropriate quality controls were considered. In addition, we explored the performance of Paired Box 2 (Pax2) as an endometrium specific marker in endometrial and endometriotic primary cell cultures; we also characterised the most diffused endometriosis cell lines with respect to important markers including the short tandem repeat (STR) profile. PARTICIPANTS/MATERIALS, SETTING, METHODS: Literature review part: almost 300 published protocols describing the isolation and creation of primary cell cultures from endometriosis were reviewed. Wet-lab part: primary cells isolated from 13 endometriosis patients were analysed by immunohistochemistry, immunofluorescence and FACS for the expression of Pax2. Cell lines Z11 and Z12, the most diffused endometriosis cell lines, were characterised with respect to the expression of Pax2, steroid hormone receptors and STR profile. MAIN RESULTS AND THE ROLE OF CHANCE: From the literature review work, we underscored the lack of sufficient cell purity and phenotypic characterisation of primary cell cultures, which present high risk of contaminations from surrounding non-endometriotic tissues. Past work based on the use of cell lines was reviewed as well, and it emerged that cell line authentication was never performed. In an effort to address these weaknesses for future research, we present data on the performance of Pax2, a suitable marker to exclude ovarian (and other non-endometrial) cell contaminations from primary cell cultures; STR profiles of cell lines Z11 and Z12 were analysed and indicated that the cells were authentic. These profiles are now available for authentication purposes to researchers wishing to perform experiments with these cells. A quality control pipeline to assure sufficient quality of in vitro research in the field of reproductive biology and endometriosis is proposed. We encourage scientists, research institutes, journal reviewers, editors and funding bodies to raise awareness of the problem and adopt appropriate policies to solve it in the future. LARGE-SCALE DATA: STR profiles of cell lines Z11 and Z12 are deposited at the Cellosaurus database-web.expasy.org. LIMITATIONS, REASONS FOR CAUTION: There may be additional markers suitable to assess cell quality. WIDER IMPLICATIONS OF THE FINDINGS: Future in vitro research in endometriosis and the reliability of outcomes can be improved by using the recommendations presented in this study

    Endometriotic cell culture contamination and authenticity: a source of bias in in vitro research?

    No full text
    STUDY QUESTION: Are the primary cell cultures and cell lines used in endometriosis research of sufficient quality? SUMMARY ANSWER: Primary cells used in endometriosis research lack purity and phenotypic characterisation, and cell lines are not genotypically authenticated. WHAT IS KNOWN ALREADY: The poor reproducibility of in vitro research and the lack of authenticity of the cell lines used represent reasons of concern in the field of reproductive biology and endometriosis research. STUDY DESIGN, SIZE, DURATION: In the present study, past in vitro research in the field of endometriosis was systematically reviewed to determine whether the appropriate quality controls were considered. In addition, we explored the performance of Paired Box 2 (Pax2) as an endometrium specific marker in endometrial and endometriotic primary cell cultures; we also characterised the most diffused endometriosis cell lines with respect to important markers including the short tandem repeat (STR) profile. PARTICIPANTS/MATERIALS, SETTING, METHODS: Literature review part: almost 300 published protocols describing the isolation and creation of primary cell cultures from endometriosis were reviewed. Wet-lab part: primary cells isolated from 13 endometriosis patients were analysed by immunohistochemistry, immunofluorescence and FACS for the expression of Pax2. Cell lines Z11 and Z12, the most diffused endometriosis cell lines, were characterised with respect to the expression of Pax2, steroid hormone receptors and STR profile. MAIN RESULTS AND THE ROLE OF CHANCE: From the literature review work, we underscored the lack of sufficient cell purity and phenotypic characterisation of primary cell cultures, which present high risk of contaminations from surrounding non-endometriotic tissues. Past work based on the use of cell lines was reviewed as well, and it emerged that cell line authentication was never performed. In an effort to address these weaknesses for future research, we present data on the performance of Pax2, a suitable marker to exclude ovarian (and other non-endometrial) cell contaminations from primary cell cultures; STR profiles of cell lines Z11 and Z12 were analysed and indicated that the cells were authentic. These profiles are now available for authentication purposes to researchers wishing to perform experiments with these cells. A quality control pipeline to assure sufficient quality of in vitro research in the field of reproductive biology and endometriosis is proposed. We encourage scientists, research institutes, journal reviewers, editors and funding bodies to raise awareness of the problem and adopt appropriate policies to solve it in the future. LARGE-SCALE DATA: STR profiles of cell lines Z11 and Z12 are deposited at the Cellosaurus database-web.expasy.org. LIMITATIONS, REASONS FOR CAUTION: There may be additional markers suitable to assess cell quality. WIDER IMPLICATIONS OF THE FINDINGS: Future in vitro research in endometriosis and the reliability of outcomes can be improved by using the recommendations presented in this study
    • …
    corecore