53 research outputs found

    Topographic influences on transient harbor oscillations excited by N-waves

    Get PDF
    The main objective of this paper is to comprehensively study influences of the variation of the bottom profile inside the harbor on the transient harbor oscillations excited by normally-incident N-waves. The specific physical phenomena investigated consist of wave profile evolution, maximum runup, relative wave energy distribution and total wave energy inside the harbor. A series of numerical experiments are implemented using a fully nonlinear Boussinesq model, FUNWAVE-TVD. Results show that when the harbor is subjected to the leading-elevation N-waves (LEN waves), the evolution of the maximum free surface elevation during the wave shoaling process inside the harbor coincides well with Green's law overall. When the incident wave amplitude is small, the maximum runup inside the harbor is almost only determined by the incident wave amplitude. As the incident wave amplitude increases, effects of the bottom profile on the maximum runup closely depend on both the incident wave type and amplitude. As the mean water depth inside the harbor decreases, the relative wave energy distribution tends to become more uniform, regardless of the incident wave amplitude and type. Finally, the variation trend of the total wave energy with the bottom profile is found to depend on the incident wave amplitude

    Theory of current-driven motion of Skyrmions and spirals in helical magnets

    Full text link
    We study theoretically the dynamics of the spin textures, i.e., Skyrmion crystal (SkX) and spiral structure (SS), in two-dimensional helical magnets under external current. By numerically solving the Landau-Lifshitz-Gilbert equation, it is found that (i) the critical current density of the motion is much lower for SkX compared with SS in agreement with the recent experiment, (ii) there is no intrinsic pinning effect for SkX and the deformation of the internal structure of Skyrmion reduces the pinning effect dramatically, (iii) the Bragg intensity of SkX shows strong time-dependence as can be observed by neutron scattering experiment.Comment: 4 pages, 3 figure

    Dynamics and inertia of skyrmionic spin structures

    Get PDF
    Skyrmions are topologically protected winding vector fields characterized by a spherical topology. Magnetic skyrmions can arise as the result of the interplay of various interactions, including exchange, dipolar and anisotropy energy in the case of magnetic bubbles and an additional Dzyaloshinskii-Moriya interaction in the case of chiral skyrmions. Whereas the static and low-frequency dynamics of skyrmions are already well under control, their gigahertz dynamical behaviour has not been directly observed in real space. Here, we image the gigahertz gyrotropic eigenmode dynamics of a single magnetic bubble and use its trajectory to experimentally confirm its skyrmion topology. The particular trajectory points to the presence of strong inertia, with a mass much larger than predicted by existing theories. This mass is endowed by the topological confinement of the skyrmion and the energy associated with its size change. It is thereby expected to be found in all skyrmionic structures in magnetic systems and beyond. Our experiments demonstrate that the mass term plays a key role in describing skyrmion dynamics.

    5-HTTLPR Polymorphism Impacts Task-Evoked and Resting-State Activities of the Amygdala in Han Chinese

    Get PDF
    Background: Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Methodology/Principal Findings: Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|.2.028, p,0.05, corrected), but no significant difference was found in the bilateral amygdala in response to negative stimuli in the emotional processing task. Conclusions/Significance: 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. The
    corecore