132 research outputs found

    The effects of filling patterns on the powder–binder separation in powder injection molding

    Get PDF
    AbstractThe powder–binder separation is a common difficulty during injection molding, which leads to the inhomogeneity in the debinding and sintering stages. Previous studies focus on the relationship between “final results” and “initial conditions”, while the dynamic filling process of feedstock and the evolution of powder–binder separation were ignored. This work investigated the effects of filling patterns on the powder–binder separation during powder injection molding. The mold filling model of PIM has been developed, based on the multiphase fluid theory and the viscosity model of feedstock. Parameters of the viscosity model were modified by the experimental data. Numerical simulations were compared with experiments with the same process parameters. The powder–binder separation phenomena in green bodies were detected by X-Ray computed tomography (CT). The experimental phenomena were explained clearly by the evolution of powder–binder separation obtained with numerical simulation method. A typical compacting filling pattern of PIM and filling mobility variable of the feedstock were proposed. A proper filling pattern was helpful to ensure the mobility of feedstock and the homogeneity of green body

    Metal Injection Moulding of High Nb-Containing TiAl Alloy and Its Oxidation Behaviour at 900°C

    Get PDF
    High Nb-containing TiAl alloy with a nominal composition of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y (at %) was fabricated by metal injection moulding (MIM) technology with an improved wax-based binder. The critical powder loading and feedstock rheological behaviour were determined. The influence of sintering temperature on microstructures and mechanical properties of the sintered samples and their oxidation behaviour were also investigated. Results showed that a feedstock, with a powder loading of 68 vol % and good flowability, could be obtained by using the improved binder, and oxygen pick-up was lower than that of the sample prepared by using a traditional binder. The ultimate tensile strength (UTS) and plastic elongation of the sample sintered at 1480 °C for 2 h were 412 MPa and 0.33%, at room temperature, respectively. The 1480 °C-sintered sample consisted of γ/α2 lamellar microstructure with the average colony size of about 70 µm, and its porosity was about 4%. The sintered alloy showed better oxidation resistance than that of the cast alloy counterpart

    Enhanced hydrogen storage properties of LiAlH4 catalyzed by CoFe2O4 nanoparticles

    Get PDF
    The catalytic effects of CoFe2O4 nanoparticles on the hydrogen storage properties of LiAlH4 prepared by ball milling were investigated. The onset desorption temperature of the LiAlH4 + 2 mol% CoFe2O4 sample is 65 °C, which is 90 °C lower that of the as-received LiAlH4, with approximately 7.2 wt% hydrogen released at 250 °C. The isothermal desorption results show that for the 2 mol% CoFe2O4 doped sample dehydrogenated at 120 °C, 6.8 wt% of hydrogen can be released within 160 min, which is 6.1 wt% higher than that of the as-received LiAlH4 under the same conditions. Through the differential scanning calorimetry (DSC) and the Kissinger desorption kinetics analyses, the apparent activation energy, Ea, of the 2 mol% CoFe2O4 doped sample is calculated as 52.4 kJ mol -1 H2 and 86.5 kJ mol-1 H2 for the first two decomposition processes. This is 42.4 kJ mol-1 H 2 and 86.1 kJ mol-1 H2 lower compared with the pristine LiAlH4, respectively, indicating considerably improved dehydrogenation kinetics by doping the CoFe2O4 catalyst in the LiAlH4 matrix. From the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses, a series of finely dispersed Fe and Co species with a range of valence states, produced from the reactions between LiAlH4 and CoFe2O4, play a synergistic role in remarkably improving LiAlH4 dehydrogenation properties. The rehydrogenation properties of the LiAlH4 + 2 mol% CoFe 2O4 sample have also been investigated at 140 °C under 6.5 MPa pressure held for 2.5 hPeer ReviewedPostprint (published version

    Design and performance evaluation of additively manufactured composite lattice structures of commercially pure Ti (CP-Ti)

    Get PDF
    Ti alloys with lattice structures are garnering more and more attention in the field of bone repair or regeneration due to their superior structural, mechanical, and biological properties. In this study, six types of composite lattice structures with different strut radius that consist of simple cubic (structure A), body-centered cubic (structure B), and edge-centered cubic (structure C) unit cells are designed. The designed structures are firstly simulated and analysed by the finite element (FE) method. Commercially pure Ti (CP–Ti) lattice structures with optimized unit cells and strut radius are then fabricated by selective laser melting (SLM), and the dimensions, microtopography, and mechanical properties are characterised. The results show that among the six types of composite lattice structures, combined BA, CA, and CB structures exhibit smaller maximum von-Mises stress, indicating that these structures have higher strength. Based on the fitting curves of stress/specific surface area versus strut radius, the optimized strut radius of BA, CA, and CB structures is 0.28, 0.23, and 0.30 mm respectively. Their corresponding compressive yield strength and compressive modulus are 42.28, 30.11, and 176.96 MPa, and 4.13, 2.16, and 7.84 GPa, respectively. The CP-Ti with CB unit structure presents a similar strength and compressive modulus to the cortical bone, which makes it a potential candidate for subchondral bone restorations

    The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants

    Get PDF
    In this study, the effects of Cu content on wear, corrosion, and tribocorrosion resistance of Ti-10Mo-xCu alloy were investigated. Results revealed that hardness of Ti-10Mo-xCu alloy increased from 355.1 ± 15.2 HV to 390.8 ± 17.6 HV by increasing Cu content from 0 % to 5 %, much higher than CP Ti (106.6 ± 15.1 HV) and comparable to Ti64 (389.7 ± 13.9 HV). With a higher Cu content, wear and tribocorrosion resistance of Ti-10Mo-xCu alloys were enhanced, and corrosion resistance showed an initial increase with a subsequent decrease. Wear mechanisms under pure mechanical wear and tribocorrosion conditions of Ti-10Mo-xCu alloys were a combination of delamination, abrasion and adhesion wear

    Synergistic improvement of pitting and wear resistance of laser powder bed fusion 420 stainless steel reinforced by size-controlled spherical cast tungsten carbides

    Get PDF
    The spherical cast WC/W2C is selected to produce a martensitic stainless steel-based composite using the laser powder bed fusion technique. W and C reacted with Fe and Cr, creating a strong bond between the particles and the matrix, reducing the wear rate by over 98%. W and C diffuse to the matrix, increasing the hardness over 100 HV0.5. The interface between cast WC/W2C and matrix is sensitive to pitting corrosion through galvanic effects. However, the formation of austenite and WO3 from spherical cast WC/W2C decomposition improves the critical pitting potential and passive film stability

    Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and oxygen reduction reaction

    Get PDF
    In recent years, heteroatom-doped biomass-derived carbon has attracted intensive attention in vast fields due to their inexpensive precursors and abundant resources, especially in oxygen reduction reaction and supercapacitors. This research demonstrates a simple strategy to prepare mulberry leaves-derived nitrogen, sulfur dual-doped ladder-like porous carbon material, which possesses high content of nitrogen (8.17 at %), sulfur (1.97 at %), large surface area (1689 m g) and porous structure with a mass of micropores and mesopores. With respect to electrode material of supercapacitor, the nitrogen, sulfur dual-doped ladder-like carbon exhibits large specific capacitance of 243.4 F g at 0.1 A g and outstanding durability (94% retention after 5000 cycles at 3 A g). Moreover, in comparison to Pt/C catalyst, nitrogen, sulfur dual-doped ladder-like porous carbon presents excellent electrochemical performances of long term stability (90.2% retention after 20000 s) and resistance to methanol crossover for oxygen reduction reaction. This work successfully may provide a new case to take advantage of nature materials to fabricate heteroatom-doped carbon for energy conversion and storage

    The Optimization of Ti Gradient Porous Structure Involves the Finite Element Simulation Analysis

    Get PDF
    Titanium (Ti) and its alloys are attracting special attention in the field of dentistry and orthopedic bioengineering because of their mechanical adaptability and biological compatibility with the natural bone. The dental implant is subjected to masticatory forces in the oral environment and transfers these forces to the surrounding bone tissue. Therefore, by simulating the mechanical behavior of implants and surrounding bone tissue we can assess the effects of implants on bone growth quite accurately. In this study, dental implants with different gradient pore structures that consisted of simple cubic (structure a), body centered cubic (structure b) and side centered cubic (structure c) were designed, respectively. The strength of the designed gradient porous implant in the oral environment was simulated by three-dimensional finite element simulation technique to assess the mechanical adaptation by the stress-strain distribution within the surrounding bone tissue and by examining the fretting of the implant-bone interface. The results show that the maximum equivalent stress and strain in the surrounding bone tissue increase with the increase of porosity. The stress distribution of the gradient implant with a smaller difference between outer and inner pore structure is more uniform. So, a-b type porous implant exhibited less stress concentration. For a-b structure, when the porosity is between 40 and 47%, the stress and strain of bone tissue are in the range of normal growth. When subject to lingual and buccal stresses, an implant with higher porosity can achieve more uniform stress distribution in the surrounding cancellous bone than that of low porosity implant. Based on the simulated results, to achieve an improved mechanical fixation of the implant, the optimum gradient porous structure parameters should be: average porosity 46% with an inner porosity of 13% (b structure) and outer porosity of 59% (a structure), and outer pore sized 500 μm. With this optimized structure, the bone can achieve optimal ingrowth into the gradient porous structure, thus provide stable mechanical fixation of the implant. The maximum equivalent stress achieved 99 MPa, which is far below the simulation yield strength of 299 MPa

    Study on the Hot Deformation Characterization of Borated Stainless Steel by Hot Isostatic Pressing

    No full text
    Borated stainless steel (BSS) specimens have a boron content of 1.86 wt%, and are prepared by hot isostatic pressing (HIP) conducted at different temperatures, ranging from 1000 to 1100 °C and a constant true strain rate (0.01, 0.1, 1 and 10 s−1). These tests, with observations and microstructural analysis, have achieved the hot deformation characteristics and mechanisms of BSS. In this research, the activation energy (Q) and Zener–Hollomon parameter (Z) were contrasted against the flow curves: Q = 442.35 kJ/mol. The critical conditions associated with the initiation of dynamic recrystallization (DRX) for BSS were precisely calculated based on the function between the strain hardening rate with the flow stress: at different temperatures from 1000 to 1100 °C: the critical stresses were 146.69–254.77 MPa and the critical strains were 0.022–0.044. The facts show that the boron-containing phase of BSS prevented the onset of DRX, despite the saturated boron in the austenite initiated DRX. The microstructural analysis showed that hot deformation promoted the generation of borides, which differed from the initial microstructure of HIP. The inhomogeneous distribution of elements in the boron-containing phase was caused by hot compression

    Improvement in Mechanical and Thermal Properties of Graphite Flake/Cu Composites by Introducing TiC Coating on Graphite Flake Surface

    No full text
    In this work, TiC coating was successfully deposited on a graphite flake surface via molten salt technique, for the purpose of promoting the interfacial connection between Cu and graphite flake. Vacuum hot pressing was then employed to prepare TiC-coated graphite flake/Cu composite. The results indicate that introducing TiC coating on graphite flake surface can evidently reduce the pores and gaps at the interface, resulting in a significant improvement on the bending strength. When the TiC-coated graphite flake content is 60 vol%, the bending strength is increased by 58% compared with the uncoated one. The coefficient of thermal expansion dropped from 6.0 ppm·K−1 to 4.4 ppm·K−1, with the corresponding thermal conductivity as high as 571 W·m−1·K−1. The outstanding thermal conductivity, apposite coefficient of thermal expansion, as well as superior processability, make TiC-coated graphite flake/Cu composite a satisfactory electronic packaging material with vast prospect utilized in microelectronic industry
    corecore