274 research outputs found
Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay
published_or_final_versio
Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue
<p>Abstract</p> <p>Background</p> <p>The purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice <it>in vitro </it>at 635, 730, 808, 890 and 980 nm wavelengths of laser.</p> <p>Methods</p> <p>The measurements were performed using a CCD detector, and the optical properties were assessed from the measurements using the spatially resolved reflectance, and nonlinear fitting of diffusion equation.</p> <p>Results</p> <p>The results of measurement showed that the absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at five different wavelengths vary with a change of wavelength. The maximum absorption coefficient for tissue samples is 0.265 mm<sup>-1 </sup>at 980 nm, and the minimum absorption coefficient is 0.0332 mm<sup>-1 </sup>at 730 nm, and the maximum difference in the absorption coefficients is 698% between 730 and 980 nm, and the minimum difference is 1.61% between 635 and 808 nm. The maximum reduced scattering coefficient for tissue samples is 1.19 mm<sup>-1 </sup>at 635 nm, and the minimum reduced scattering coefficient is 0.521 mm<sup>-1 </sup>at 980 nm, and the maximum difference in the reduced scattering coefficients is 128% between 635 and 980 nm, and the minimum difference is 1.15% between 890 and 980 nm. The maximum optical penetration depth for tissue samples is 3.57 mm at 808 nm, and the minimum optical penetration depth is 1.43 mm at 980 nm. The maximum diffusion constant for tissue samples is 0.608 mm at 890 nm, and the minimum diffusion constant is 0.278 mm at 635 nm. The maximum diffuse reflectance is 3.57 mm<sup>-1 </sup>at 808 nm, and the minimum diffuse reflectance is 1.43 mm<sup>-1 </sup>at 980 nm. The maximum shift Δx of diffuse reflectance is 1.11 mm<sup>-1 </sup>at 890 nm, and the minimum shift Δx of diffuse reflectance is 0.507 mm<sup>-1 </sup>at 635 nm.</p> <p>Conclusion</p> <p>The absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at 635, 730, 808, 890 and 980 nm wavelengths vary with a change of wavelength. There were significant differences in the optical properties for tissue samples at five different wavelengths (<it>P </it>< 0.01).</p
Comprehensive Study in the Inhibitory Effect of Berberine on Gene Transcription, Including TATA Box
Berberine (BBR) is an established natural DNA intercalator with numerous pharmacological functions. However, currently there are neither detailed reports concerning the distribution of this alkaloid in living cells nor reports concerning the relationship between BBR's association with DNA and the function of DNA. Here we report that the distribution of BBR within the nucleus can be observed 30 minutes after drug administration, and that the content of berberine in the nucleus peaks at around 4 µmol, which is twelve hours after drug administration. The spatial conformation of DNA and chromatin was altered immediately after their association with BBR. Moreover, this association can effectively suppress the transcription of DNA in living cell systems and cell-free systems. Electrophoretic mobility shift assays (EMSA) demonstrated further that BBR can inhibit the association between the TATA binding protein (TBP) and the TATA box in the promoter, and this finding was also attained in living cells by chromatin immunoprecipitation (ChIP). Based on results from this study, we hypothesize that berberine can suppress the transcription of DNA in living cell systems, especially suppressing the association between TBP and the TATA box by binding with DNA and, thus, inhibiting TATA box-dependent gene expression in a non-specific way. This novel study has significantly expanded the sphere of knowledge concerning berberine's pharmacological effects, beginning at its paramount initial interaction with the TATA box
Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana.
BACKGROUND: In the Brassicaceae, the early stages of compatible pollen-stigma interactions are tightly controlled with early checkpoints regulating pollen adhesion, hydration and germination, and pollen tube entry into the stigmatic surface. However, the early signalling events in the stigma which trigger these compatible interactions remain unknown. RESULTS: A set of stigma-expressed pseudokinase genes, termed BRASSIKINs (BKNs), were identified and found to be present in only core Brassicaceae genomes. In Arabidopsis thaliana Col-0, BKN1 displayed stigma-specific expression while the BKN2 gene was expressed in other tissues as well. CRISPR deletion mutations were generated for the two tandemly linked BKNs, and very mild hydration defects were observed for wild-type Col-0 pollen when placed on the bkn1/2 mutant stigmas. In further analyses, the predominant transcript for the stigma-specific BKN1 was found to have a premature stop codon in the Col-0 ecotype, but a survey of the 1001 Arabidopsis genomes uncovered three ecotypes that encoded a full-length BKN1 protein. Furthermore, phylogenetic analyses identified intact BKN1 orthologues in the closely related outcrossing Arabidopsis species, A. lyrata and A. halleri. Finally, the BKN pseudokinases were found to be plasma-membrane localized through the dual lipid modification of myristoylation and palmitoylation, and this localization would be consistent with a role in signaling complexes. CONCLUSION: In this study, we have characterized the novel Brassicaceae-specific family of BKN pseudokinase genes, and examined the function of BKN1 and BKN2 in the context of pollen-stigma interactions in A. thaliana Col-0. Additionally, premature stop codons were identified in the predicted stigma specific BKN1 gene in a number of the 1001 A. thaliana ecotype genomes, and this was in contrast to the out-crossing Arabidopsis species which carried intact copies of BKN1. Thus, understanding the function of BKN1 in other Brassicaceae species will be a key direction for future studies
- …
